期刊文献+
共找到97篇文章
< 1 2 5 >
每页显示 20 50 100
Variable Separation and Derivative-Dependent Functional Separable Solutions to Generalized Nonlinear Wave Equations 被引量:3
1
作者 ZHANGShun-Li LOUSen-Yue 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第2期161-174,共14页
Using the generalized conditional symmetry approach, we obtain a number of new generalized (1+1)-dimensional nonlinear wave equations that admit derivative-dependent functional separable solutions.
关键词 variable separation nonlinear wave derivative-dependent functional separable solution
下载PDF
Extension of Variable Separable Solutions for Nonlinear Evolution Equations 被引量:3
2
作者 ZHANG Shun-Li ZHU Xiao-Ning +1 位作者 WANG Yong-Mao LOU Sen-Yue 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第4期829-832,共4页
We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional sep... We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional separable solution. The new definitions can unify various kinds of variable separable solutions appearing in references. As application, we classify the generalized nonlinear diffusion equations that admit special functional separable solutions and obtain some exact solutions to the resulting equations. 展开更多
关键词 nonlinear evolution equation variable separable solution generalized conditional symmetry
下载PDF
Variable Separation and Exact Separable Solutions for Equations of Type uxt=A(u,ux)uxx+B(u,ux) 被引量:1
3
作者 ZHANG Shun-Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第6期969-978,共10页
The generalized conditional symmetry is developed to study the variable separation for equations of type uxt = A(u,ux)uxx + B(u, ux). Complete classification of those equations which admit derivative-dependent fu... The generalized conditional symmetry is developed to study the variable separation for equations of type uxt = A(u,ux)uxx + B(u, ux). Complete classification of those equations which admit derivative-dependent functional separable solutions is obtained and some of their exact separable solutions are constructed. 展开更多
关键词 nonlinear evolution equations variable separation generalized conditional symmetry
下载PDF
Extended Group Foliation Method and Functional Separation of Variables to Nonlinear Wave Equations 被引量:9
4
作者 QU Chang-Zheng ZHANG Shun-Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第4X期577-582,共6页
Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to n... Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach. 展开更多
关键词 symmetry group group foliation method nonlinear wave equation functional separation of variables
下载PDF
Functional Separable Solutions to Nonlinear Diffusion Equations by Group Foliation Method 被引量:5
5
作者 HU Jia-Yi QU Chang-Zheng YIN Hui 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第2期193-199,共7页
We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to thi... We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained. 展开更多
关键词 group foliation method functional separation of variable nonlinear diffusion equation symmetry group
下载PDF
On the feasibility of variable separation method based on Hamiltonian system for plane magnetoelectroelastic solids 被引量:5
6
作者 侯国林 阿拉坦仓 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第8期2753-2758,共6页
The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular dom... The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method. 展开更多
关键词 magnetoelectroelastic solid variable separation method COMPLETENESS general solution
下载PDF
Solving mKdV-sinh-Gordon equation by a modified variable separated ordinary differential equation method 被引量:4
7
作者 谢元喜 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第12期5123-5132,共10页
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact sol... By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach. 展开更多
关键词 modified variable separated ODE method mKdV-sinh-Gordon equation explicit andexact solution
下载PDF
Functional Variable Separation for Extended Nonlinear Elliptic Equations 被引量:4
8
作者 ZHANG Shun-Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第3X期385-390,共6页
This paper is devoted to the study of functional variable separation for extended nonlinear elliptic equations. By applying the functional variable separation approach to extended nonlinear elliptic equations via the ... This paper is devoted to the study of functional variable separation for extended nonlinear elliptic equations. By applying the functional variable separation approach to extended nonlinear elliptic equations via the generalized conditional symmetry, we obtain complete classification of those equations which admit functional separable solutions (FSSs) and construct some exact FSSs to the resulting equations. 展开更多
关键词 nonlinear elliptic equation functional variable separation generalized conditional symmetry
下载PDF
The derivative-dependent functional variable separation for the evolution equations 被引量:3
9
作者 张顺利 楼森岳 屈长征 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第12期2765-2776,共12页
This paper studies variable separation of the evolution equations via the generalized conditional symmetry. To illustrate, we classify the extended nonlinear wave equation utt = A(u, ux)uxx+B(u, ux, ut) which adm... This paper studies variable separation of the evolution equations via the generalized conditional symmetry. To illustrate, we classify the extended nonlinear wave equation utt = A(u, ux)uxx+B(u, ux, ut) which admits the derivative- dependent functional separable solutions (DDFSSs). We also extend the concept of the DDFSS to cover other variable separation approaches. 展开更多
关键词 derivative-dependent functional variable separation evolution equations generalized conditional symmetry
下载PDF
Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation 被引量:2
10
作者 Ting-Hui Ning Xiao-Yun Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期994-1000,共7页
In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve ... In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative. 展开更多
关键词 Fractional Fourier law Fractional heat conduction equation - Spherical coordinate system - The separation of variables Mittag-Leffler function
下载PDF
Functional Separable Solutions of Nonlinear Heat Equations in Non-Newtonian Fluids 被引量:1
11
作者 GOU Ming QU Chang-Zheng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第2期257-262,共6页
We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables... We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables is studied by using the group foliation method. A classification of the equation which admits the functional separable solutions is performed. As a consequence, some solutions to the resulting equations are obtained. 展开更多
关键词 group foliation method functional separation of variable nonlinear heat equation symmetry group
下载PDF
The projective Riccati equation expansion method and variable separation solutions for the nonlinear physical differential equation in physics 被引量:1
12
作者 马正义 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第7期1848-1854,共7页
Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitr... Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitrary functions for two nonlinear physical models are obtained. Based on one of the variable separation solutions and by choosing appropriate functions, new types of interactions between the multi-valued and single-valued solitons, such as a peakon-like semi-foldon and a peakon, a compacton-like semi-foldon and a compacton, are investigated. 展开更多
关键词 projective Riccati equation nonlinear physical equation variable separation solution SOLITON
下载PDF
Variable Separation for(1+1)-Dimensional Nonlinear Evolution Equations with Mixed Partial Derivatives 被引量:1
13
作者 WANG Peng-Zhou ZHANG Shun-Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第10期797-802,共6页
We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits de... We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples. 展开更多
关键词 (1 1)-dimensional nonlinear evolution equations variable separation generalized conditional symmetry derivative-dependent functional separable solution
下载PDF
Multi-linear Variable Separation Approach to Solve a (2+1)-DimensionalGeneralization of Nonlinear Schroedinger System 被引量:1
14
作者 SHENShou-Feng ZHANGJun PANZu-Liang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6期965-968,共4页
By using a Baecklund transformation and the multi-linear variable separationapproach, we find a new general solution of a (2+1)-dimensional generalization of the nonlinearSchroedinger system. The new 'universal... By using a Baecklund transformation and the multi-linear variable separationapproach, we find a new general solution of a (2+1)-dimensional generalization of the nonlinearSchroedinger system. The new 'universal' formula is defined, and then, rich coherent structures canbe found by selecting corresponding functions appropriately. 展开更多
关键词 variable separation approach (2+1)-dimensional generalization of nonlinearschrodinger system coherent structure
下载PDF
Solving (2+1)-dimensional sine-Poisson equation by a modified variable separated ordinary differential equation method 被引量:1
15
作者 苏卡林 谢元喜 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期40-48,共9页
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa... By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique. 展开更多
关键词 modified variable separated ODE method (2 1)-dimensional sine-Poisson equation explicit and exact solution
下载PDF
Separation of Variable Treatment for Solving Time—Dependent Potentials
16
作者 QIANShang-Wu GUZhi-Yu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2001年第2期149-150,共2页
We use the separation of variable treatment to treat some time-dependent systems, and point out that the condition of separability is the same as the condition of existence of invariant, and the separation of variable... We use the separation of variable treatment to treat some time-dependent systems, and point out that the condition of separability is the same as the condition of existence of invariant, and the separation of variable treatment is interrelated with the quantum-invariant method and the propagator method. We directly use the separation of variable treatment to obtain the wavefunctions of the time-dependent Coulomb potential and the time-dependent Hulthén potential. 展开更多
关键词 time-dependent system separation of variable treatment time-dependent Coulomb potential time-dependent Hulthen potential WAVEFUNCTION
下载PDF
Variable Separated Solutions and Four-Dromion Excitations for (2+1)-Dimensional Nizhnik-Novikov-Veselov Equation
17
作者 HU Ya-Hong MA Zheng-Yi ZHENG Chun-Long 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第3期679-684,共6页
Using the mapping approach via the projective Riccati equations, several types of variable separated solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are obtained, including multiple-soliton solu... Using the mapping approach via the projective Riccati equations, several types of variable separated solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are obtained, including multiple-soliton solutions, periodic-soliton solutions, and Weierstrass function solutions. Based on a periodic-soliton solution, a new type of localized excitation, i.e., the four-dromion soliton, is constructed and some evolutional properties of this localized structure are briefly discussed. 展开更多
关键词 Imapping approach Nizhnik-Novikov-Veselov equation variable separated solution DROMION
下载PDF
Variable Separation Approach to Solve (2 + 1)-Dimensional Generalized Burgers System: Solitary Wave and Jacobi Periodic Wave Excitations
18
作者 ZHENGChun-Long 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第3期391-396,共6页
By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized co... By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakons, foldons, and previously revealed chaotic and fractal localized solutions, some new types of excitations — compacton and Jacobi periodic wave solutions are obtained by introducing appropriate lower dimensional piecewise smooth functions and Jacobi elliptic functions. 展开更多
关键词 generalized Burgers system variable separation approach solitary wave Jacobi periodic wave
下载PDF
A SPECIAL METHOD OF FOURIER SERIES WHICH IS EQUAL TO THE METHOD OF SEPARATION OF VARIABLES ON BOUNDARY VALUE PROBLEM
19
作者 Yan Xianggan Wu Jike, Department of Mechanics, Peking Unirersity, Bejing 100871. China 《Acta Mechanica Solida Sinica》 SCIE EI 1997年第3期255-261,共7页
By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution ... By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution is equal to the result of separation of variables. As a result, the non-linear characteristic equations resulting from the method of separation of variables are transformed into polynomial equations that can provide a foundation for approximate computation and asymptotic analysis. 展开更多
关键词 separation of singularity series resolution method of separation of variables boundary value problem characteristic equation
下载PDF
Some discussions about method for solving the variable separating nonlinear models
20
作者 阮航宇 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期17-24,共8页
Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of th... Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of these equations come from the nonzero seed solution. However, these nonzero seed solutions is likely to result in the divergent phenomena for the other field component of the same equation. The convergence and the signification of all field components should be discussed when someone solves the nonlinear equation using the variable separating method. 展开更多
关键词 variable separating method nonzero seed solution nonlinear equation
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部