Using the generalized conditional symmetry approach, we obtain a number of new generalized (1+1)-dimensional nonlinear wave equations that admit derivative-dependent functional separable solutions.
We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional sep...We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional separable solution. The new definitions can unify various kinds of variable separable solutions appearing in references. As application, we classify the generalized nonlinear diffusion equations that admit special functional separable solutions and obtain some exact solutions to the resulting equations.展开更多
The generalized conditional symmetry is developed to study the variable separation for equations of type uxt = A(u,ux)uxx + B(u, ux). Complete classification of those equations which admit derivative-dependent fu...The generalized conditional symmetry is developed to study the variable separation for equations of type uxt = A(u,ux)uxx + B(u, ux). Complete classification of those equations which admit derivative-dependent functional separable solutions is obtained and some of their exact separable solutions are constructed.展开更多
Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to n...Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.展开更多
We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to thi...We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.展开更多
The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular dom...The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method.展开更多
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact sol...By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach.展开更多
This paper is devoted to the study of functional variable separation for extended nonlinear elliptic equations. By applying the functional variable separation approach to extended nonlinear elliptic equations via the ...This paper is devoted to the study of functional variable separation for extended nonlinear elliptic equations. By applying the functional variable separation approach to extended nonlinear elliptic equations via the generalized conditional symmetry, we obtain complete classification of those equations which admit functional separable solutions (FSSs) and construct some exact FSSs to the resulting equations.展开更多
This paper studies variable separation of the evolution equations via the generalized conditional symmetry. To illustrate, we classify the extended nonlinear wave equation utt = A(u, ux)uxx+B(u, ux, ut) which adm...This paper studies variable separation of the evolution equations via the generalized conditional symmetry. To illustrate, we classify the extended nonlinear wave equation utt = A(u, ux)uxx+B(u, ux, ut) which admits the derivative- dependent functional separable solutions (DDFSSs). We also extend the concept of the DDFSS to cover other variable separation approaches.展开更多
In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve ...In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.展开更多
We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables...We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables is studied by using the group foliation method. A classification of the equation which admits the functional separable solutions is performed. As a consequence, some solutions to the resulting equations are obtained.展开更多
Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitr...Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitrary functions for two nonlinear physical models are obtained. Based on one of the variable separation solutions and by choosing appropriate functions, new types of interactions between the multi-valued and single-valued solitons, such as a peakon-like semi-foldon and a peakon, a compacton-like semi-foldon and a compacton, are investigated.展开更多
We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits de...We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples.展开更多
By using a Baecklund transformation and the multi-linear variable separationapproach, we find a new general solution of a (2+1)-dimensional generalization of the nonlinearSchroedinger system. The new 'universal...By using a Baecklund transformation and the multi-linear variable separationapproach, we find a new general solution of a (2+1)-dimensional generalization of the nonlinearSchroedinger system. The new 'universal' formula is defined, and then, rich coherent structures canbe found by selecting corresponding functions appropriately.展开更多
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa...By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.展开更多
We use the separation of variable treatment to treat some time-dependent systems, and point out that the condition of separability is the same as the condition of existence of invariant, and the separation of variable...We use the separation of variable treatment to treat some time-dependent systems, and point out that the condition of separability is the same as the condition of existence of invariant, and the separation of variable treatment is interrelated with the quantum-invariant method and the propagator method. We directly use the separation of variable treatment to obtain the wavefunctions of the time-dependent Coulomb potential and the time-dependent Hulthén potential.展开更多
Using the mapping approach via the projective Riccati equations, several types of variable separated solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are obtained, including multiple-soliton solu...Using the mapping approach via the projective Riccati equations, several types of variable separated solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are obtained, including multiple-soliton solutions, periodic-soliton solutions, and Weierstrass function solutions. Based on a periodic-soliton solution, a new type of localized excitation, i.e., the four-dromion soliton, is constructed and some evolutional properties of this localized structure are briefly discussed.展开更多
By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized co...By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakons, foldons, and previously revealed chaotic and fractal localized solutions, some new types of excitations — compacton and Jacobi periodic wave solutions are obtained by introducing appropriate lower dimensional piecewise smooth functions and Jacobi elliptic functions.展开更多
By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution ...By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution is equal to the result of separation of variables. As a result, the non-linear characteristic equations resulting from the method of separation of variables are transformed into polynomial equations that can provide a foundation for approximate computation and asymptotic analysis.展开更多
Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of th...Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of these equations come from the nonzero seed solution. However, these nonzero seed solutions is likely to result in the divergent phenomena for the other field component of the same equation. The convergence and the signification of all field components should be discussed when someone solves the nonlinear equation using the variable separating method.展开更多
基金The project supported by the National Outstanding Youth Foundation of China (No.19925522)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant.No.2000024832)National Natural Science Foundation of China (No.90203001)
文摘Using the generalized conditional symmetry approach, we obtain a number of new generalized (1+1)-dimensional nonlinear wave equations that admit derivative-dependent functional separable solutions.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10447007 and 10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional separable solution. The new definitions can unify various kinds of variable separable solutions appearing in references. As application, we classify the generalized nonlinear diffusion equations that admit special functional separable solutions and obtain some exact solutions to the resulting equations.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10371098, 10447007, aria 10475055, the Natural Science Foundation of Shaanxi Province of China under Grant No. 2005A13, and the Special Research Project of Educational Department of Shaanxi Province under Grant No. 03JK060
文摘The generalized conditional symmetry is developed to study the variable separation for equations of type uxt = A(u,ux)uxx + B(u, ux). Complete classification of those equations which admit derivative-dependent functional separable solutions is obtained and some of their exact separable solutions are constructed.
文摘Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371098 and the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968
文摘We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.
基金supported by the National Natural Science Foundation of China (Grant No 10562002)the Natural Science Foundation of Inner Mongolia, China (Grant No 200508010103)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070126002)the Inner Mongolia University Doctoral Scientific Research Starting Foundation
文摘The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method.
基金Project supported by the National Natural Science Foundation of China (Grant No 10672053)
文摘By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach.
基金The project supported by National Natural Science Foundation of China under Grant No. 10447007 and the Natural Science Foundation of Shaanxi Province of China under Grant No. 2005A13
文摘This paper is devoted to the study of functional variable separation for extended nonlinear elliptic equations. By applying the functional variable separation approach to extended nonlinear elliptic equations via the generalized conditional symmetry, we obtain complete classification of those equations which admit functional separable solutions (FSSs) and construct some exact FSSs to the resulting equations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10371098, 10447007 and 10475055), the Natural Science Foundation of Shaanxi Province of China (Grant No 2005A13).
文摘This paper studies variable separation of the evolution equations via the generalized conditional symmetry. To illustrate, we classify the extended nonlinear wave equation utt = A(u, ux)uxx+B(u, ux, ut) which admits the derivative- dependent functional separable solutions (DDFSSs). We also extend the concept of the DDFSS to cover other variable separation approaches.
基金supported by the National Natural Science Foundation of China(11072134 and 11102102)
文摘In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.
基金National Natural Science Foundation of China under Grant No.10671156the Program for New Century Excellent Talents in Universities under Grant No.NCET-04-0968
文摘We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables is studied by using the group foliation method. A classification of the equation which admits the functional separable solutions is performed. As a consequence, some solutions to the resulting equations are obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272071), the Natural Science Foundation of Zhejiang Province, China (Grant No Y606049) and the Key Academic Discipline of Zhejiang Province, China (Grant No 200412). Acknowledgments The authors are indebted to Professors Zhang J F, Zheng C L and Drs Zhu J M, Huang W H for their helpful suggestions and fruitful discussions.
文摘Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitrary functions for two nonlinear physical models are obtained. Based on one of the variable separation solutions and by choosing appropriate functions, new types of interactions between the multi-valued and single-valued solitons, such as a peakon-like semi-foldon and a peakon, a compacton-like semi-foldon and a compacton, are investigated.
基金National Natural Science Foundation of China under Grant Nos.10447007 and 10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples.
文摘By using a Baecklund transformation and the multi-linear variable separationapproach, we find a new general solution of a (2+1)-dimensional generalization of the nonlinearSchroedinger system. The new 'universal' formula is defined, and then, rich coherent structures canbe found by selecting corresponding functions appropriately.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10672053)
文摘By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.
文摘We use the separation of variable treatment to treat some time-dependent systems, and point out that the condition of separability is the same as the condition of existence of invariant, and the separation of variable treatment is interrelated with the quantum-invariant method and the propagator method. We directly use the separation of variable treatment to obtain the wavefunctions of the time-dependent Coulomb potential and the time-dependent Hulthén potential.
基金supported by National Natural Science Foundation of China under Grant No.10272071the Natural Science Foundation of Zhejiang Province under Grant No.Y606049
文摘Using the mapping approach via the projective Riccati equations, several types of variable separated solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are obtained, including multiple-soliton solutions, periodic-soliton solutions, and Weierstrass function solutions. Based on a periodic-soliton solution, a new type of localized excitation, i.e., the four-dromion soliton, is constructed and some evolutional properties of this localized structure are briefly discussed.
基金The project supported by National Natural Science Foundation of China under Grant No.10172056+2 种基金the Natural Science Foundation of Zhengjiang Provincethe Foundation of Zhengjiang Lishui College under Grant Nos.KZ03009 and KZ03005
文摘By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakons, foldons, and previously revealed chaotic and fractal localized solutions, some new types of excitations — compacton and Jacobi periodic wave solutions are obtained by introducing appropriate lower dimensional piecewise smooth functions and Jacobi elliptic functions.
基金Supported by the National Natural Science Foundation of Chinathe Doctoral Training of the State Education Commission of China
文摘By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution is equal to the result of separation of variables. As a result, the non-linear characteristic equations resulting from the method of separation of variables are transformed into polynomial equations that can provide a foundation for approximate computation and asymptotic analysis.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10675065, 90503006 and 10735030) and the K.C.Wong Magna Fund in Ningbo University.Acknowledgement The author would like to thank the helpful discussion of Prof. Sen-Yue Lou.
文摘Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of these equations come from the nonzero seed solution. However, these nonzero seed solutions is likely to result in the divergent phenomena for the other field component of the same equation. The convergence and the signification of all field components should be discussed when someone solves the nonlinear equation using the variable separating method.