Coal accounts for about 70% of the primary energy sources in China. The environmental pollution and resources waste involved with coal processing and utilization are serious. It is therefore urgent to develop highly-e...Coal accounts for about 70% of the primary energy sources in China. The environmental pollution and resources waste involved with coal processing and utilization are serious. It is therefore urgent to develop highly-efficient coal resources utilization theory and methods with low-carbon discharge. Based on our long-term basic research and technology development, the progress in beneficiation, cleaning, and trans- formation of coal, which includes dense phase fluidized bed dry beneficiation, deep screening of wet fine coal, micro-bubble flotation column separation, molecular coal chemistry, and transformation and sepa- ration of coal and its derivatives into value-added chemicals under mild conditions, is discussed.展开更多
The flow pattern in the confluent meander bend channel under the conditions of different discharge ratios and junction angles is numerically simulated by means of the large eddy simulation(LES), and the characterist...The flow pattern in the confluent meander bend channel under the conditions of different discharge ratios and junction angles is numerically simulated by means of the large eddy simulation(LES), and the characteristics of the flow separation zone are analyzed. Numerical results are well validated by experimental data with a good agreement. Analysis of the vertical confinement shows that the turbulence within the separation zone can be characterized as quasi-2-D. Details of the separation zone characteristics are revealed as shown by mean velocity isolines. According to the analysis of numerical results, the length and the width of the separation zone generally increase with the increase of the discharge ratio and the junction angle. However, the width of the separation zone keeps substantially constant when the junction angle increases from 60 o to90o. The dimensionless shape of the separation zone is nearly the same for three discharge ratios and three junction angles. The formulas of the relative width and the relative length of the separation zone are obtained by means of the polynomial fit method.展开更多
基金support from the National Natural Science Foundation of China(No. 50921002)
文摘Coal accounts for about 70% of the primary energy sources in China. The environmental pollution and resources waste involved with coal processing and utilization are serious. It is therefore urgent to develop highly-efficient coal resources utilization theory and methods with low-carbon discharge. Based on our long-term basic research and technology development, the progress in beneficiation, cleaning, and trans- formation of coal, which includes dense phase fluidized bed dry beneficiation, deep screening of wet fine coal, micro-bubble flotation column separation, molecular coal chemistry, and transformation and sepa- ration of coal and its derivatives into value-added chemicals under mild conditions, is discussed.
基金Project supported by the Key Program of National Natural Science Foundation of China(Grant No.51439007)
文摘The flow pattern in the confluent meander bend channel under the conditions of different discharge ratios and junction angles is numerically simulated by means of the large eddy simulation(LES), and the characteristics of the flow separation zone are analyzed. Numerical results are well validated by experimental data with a good agreement. Analysis of the vertical confinement shows that the turbulence within the separation zone can be characterized as quasi-2-D. Details of the separation zone characteristics are revealed as shown by mean velocity isolines. According to the analysis of numerical results, the length and the width of the separation zone generally increase with the increase of the discharge ratio and the junction angle. However, the width of the separation zone keeps substantially constant when the junction angle increases from 60 o to90o. The dimensionless shape of the separation zone is nearly the same for three discharge ratios and three junction angles. The formulas of the relative width and the relative length of the separation zone are obtained by means of the polynomial fit method.