期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study of Optimal Parameters of Improved 1RX Regenerator
1
作者 Avazbek Azamatovich Obidov Shavkat Olimdjanovich Mamadjanov 《Engineering(科研)》 CAS 2023年第5期291-300,共10页
In this article, researches on improvement of 1RX regenerator used in cleaning processes of cotton ginning enterprises were carried out. The effect of changing the parameters of the new working body—rubber-plate drum... In this article, researches on improvement of 1RX regenerator used in cleaning processes of cotton ginning enterprises were carried out. The effect of changing the parameters of the new working body—rubber-plate drum and machine inlet on the efficiency of cotton separation was studied in the research, and the maximum level of efficiency of separation was determined. In this paper work, the main factors affecting the efficient operation of the regenerator were identified, their value limits were determined, and research was conducted using the mathematical planning method. As a result, effective operation of the improved 1RX cotton regenerator was observed at the value of the given factors, that is, the separation efficiency was 99.5%, the cleaning efficiency was higher than 88.7%, and the amount of seed cotton in the waste was reduced lower than 2.5%. 展开更多
关键词 REGENERATOR COTTON Impurities Rubber-Plate Drum Cotton Piece Brush Drum Separation effect Enterprise Plate Axis Parameter Working Body Grate-Bar Grid
下载PDF
Highly efficient recovery of waste LiNi_(x)Co_(y)Mn_(z)O_(2) cathode materials using a process involving pyrometallurgy and hydrometallurgy
2
作者 Tianwei Zhang Juanye Dao +5 位作者 Jinsong Wang Yuzhong Guo Rundong Wan Chengping Li Xian Zhou Zhengfu Zhang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第2期149-160,共12页
Substantial environmental and economic benefits can be achieved by recycling used lithium-ion batteries. Hydrometallurgy is often employed to recover waste LiNi_(x)Co_(y)Mn_(z)O_(2) cathode materials. As Ni, Co and Mn... Substantial environmental and economic benefits can be achieved by recycling used lithium-ion batteries. Hydrometallurgy is often employed to recover waste LiNi_(x)Co_(y)Mn_(z)O_(2) cathode materials. As Ni, Co and Mn are transition metals, they exhibit similar properties;therefore, separating them is difficult. Thus, most researchers have focused on leaching processes, while minimal attention has been devoted to the separation of valuable metals from waste LiNi_(x)Co_(y)Mn_(z)O_(2) cathode materials. Herein, we propose an environment-friendly, gentle process involving the usage of pyrometallurgy and hydrometallurgy to gradually leach valuable metals and effectively separate them. Interestingly, Li is recovered through a reduction roasting and water leaching process using natural graphite powder, Ni and Co are recovered through ammonia leaching and extraction processes and Mn is recovered through acid leaching and evaporation–crystallization processes. Results show that ~87% Li, 97.01% Co, 97.08% Ni and 99% Mn can be leached using water, ammonia and acid leaching processes. The result obtained using the response surface methodology shows that the concentration of (NH4)2SO3 is a notable factor affecting the leaching of transition metals. Under optimal conditions, ~97.01% Co, 97.08% Ni and 0.64% Mn can be leached out. The decomposition of LiNi_(x)Co_(y)Mn_(z)O_(2) is a two-step process. This study provides valuable insights to develop an environment-friendly, gentle leaching process for efficiently recycling valuable metals, which is vital for the lithium-ion battery recycling industry. 展开更多
关键词 Waste LiNixCoyMnzO2 cathode materials LEACHING effective separation Series process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部