A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was f...A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was fabricated via polymeric sol–gel process. The effect of calcination temperature on single gas permeance of sol–gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350 °C and 400 °C showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexa fluoride, around Knudsen values. A much lower CO2permeance(3.7 × 10-9mol·m-2·s-1·Pa-1)was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination temperature, 500 °C, led to the formation of mesoporous structure and, hence, the membrane lost its molecular sieving property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 k Pa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7 × 10-8and ~ 3 × 10-9mol·m-2·s-1·Pa-1, respectively. Both H2 and CO2permeances of the zirconia membrane decreased with exposure time to 100 k Pa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4 × 10-8mol·m-2·s-1·Pa-1and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure.展开更多
To improve the electrolyte wettability and thermal stability of polypropylene (PP) separators, nano- SiO2/poly(vinyl alcohol)-coated PP composite separators were prepared using a simple but efficient sol-gel and d...To improve the electrolyte wettability and thermal stability of polypropylene (PP) separators, nano- SiO2/poly(vinyl alcohol)-coated PP composite separators were prepared using a simple but efficient sol-gel and dip-coating method. The effects of the tetraethoxysilane (TEOS) dosage on the morphology, wettability, and thermal stability of the composite separators were investigated using Fourier-transform infrared spectroscopy, scanning electron microscopy, and contact-angle measurements. All the composite separators gave a smaller contact angle, higher electrolyte uptake, and lower thermal shrinkage compared with the PP separator, indicating enhanced wettability and thermal stability. Unlike the case for a traditional physical mixture, Si-O-C covalent bonds were formed in the coating layer. The composite separator with a TEOS dosage of 7.5 wt% had a unique porous structure combining hierarchical pores with interstitial voids, and gave the best wettability and thermal stability. The ionic conductivity of the composite separator containing 7.5 wt% TEOS was 1.26 mS/cm, which is much higher than that of the PP separator (0.74 mS/cm). The C-rate and cycling performances of batteries assembled with the composite separator containing 7.5 wt% TEOS were better than those of batteries containing PP separators.展开更多
基金Supported by the National Natural Science Foundation of China(21276123,21490581)the National High Technology Research and Development Program of China(2012AA03A606)+3 种基金State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201002)the Natural Science Research Plan of Jiangsu Universities(11KJB530006)the "Summit of the Six Top Talents" Program of Jiangsu Provincea Project Funded by the Priority Academic Program development of Jiangsu Higher Education Institutions(PAPD)
文摘A microporous zirconia membrane with hydrogen permeance about 5 × 10-8mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 k Pa was fabricated via polymeric sol–gel process. The effect of calcination temperature on single gas permeance of sol–gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350 °C and 400 °C showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexa fluoride, around Knudsen values. A much lower CO2permeance(3.7 × 10-9mol·m-2·s-1·Pa-1)was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination temperature, 500 °C, led to the formation of mesoporous structure and, hence, the membrane lost its molecular sieving property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 k Pa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7 × 10-8and ~ 3 × 10-9mol·m-2·s-1·Pa-1, respectively. Both H2 and CO2permeances of the zirconia membrane decreased with exposure time to 100 k Pa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4 × 10-8mol·m-2·s-1·Pa-1and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure.
基金This work was supported by the Natural Science Foundation of Guangdong Province, China (No. 2016A030313475) Dongguan Science and Technology Project, China (No. 201521510201 ), and the Project for Science and Technology of Guandong Province, China (No. 2015B010135009). The authors claim that there are no conflicts of interest.
文摘To improve the electrolyte wettability and thermal stability of polypropylene (PP) separators, nano- SiO2/poly(vinyl alcohol)-coated PP composite separators were prepared using a simple but efficient sol-gel and dip-coating method. The effects of the tetraethoxysilane (TEOS) dosage on the morphology, wettability, and thermal stability of the composite separators were investigated using Fourier-transform infrared spectroscopy, scanning electron microscopy, and contact-angle measurements. All the composite separators gave a smaller contact angle, higher electrolyte uptake, and lower thermal shrinkage compared with the PP separator, indicating enhanced wettability and thermal stability. Unlike the case for a traditional physical mixture, Si-O-C covalent bonds were formed in the coating layer. The composite separator with a TEOS dosage of 7.5 wt% had a unique porous structure combining hierarchical pores with interstitial voids, and gave the best wettability and thermal stability. The ionic conductivity of the composite separator containing 7.5 wt% TEOS was 1.26 mS/cm, which is much higher than that of the PP separator (0.74 mS/cm). The C-rate and cycling performances of batteries assembled with the composite separator containing 7.5 wt% TEOS were better than those of batteries containing PP separators.