Continuous-variable entanglement in the interacting system of a mesoscopic Josephson junction with a squeezed field is investigated. It is shown that when the cavity field is initially prepared in a squeezed vacuum st...Continuous-variable entanglement in the interacting system of a mesoscopic Josephson junction with a squeezed field is investigated. It is shown that when the cavity field is initially prepared in a squeezed vacuum state and the junction in its lowest energy state, the coupling system can evolve into a two-mode Caussian state. The timedependent characteristic function in the Wigner representation for the system is analytically obtained, and the squeezing degree of the initial cavity field turns out to have not only an apparent enhancing but also a weakening effect on the entanglement of the coupling system under suitable parameter conditions.展开更多
Separability is an important problem in theory of quantum entanglement. By using the Bloch representation of quantum states in terms of the Heisenberg-Weyl observable basis, we present a new separability criterion for...Separability is an important problem in theory of quantum entanglement. By using the Bloch representation of quantum states in terms of the Heisenberg-Weyl observable basis, we present a new separability criterion for bipartite quantum systems. It is shown that this criterion can be better than the previous ones in detecting entanglement. The results are generalized to multipartite quantum states.展开更多
The hyper-spectral image contains spectral and spatial information,which increases the ability and precision of objects classification.Despite the classification value of hyper-spectral imaging technology within vario...The hyper-spectral image contains spectral and spatial information,which increases the ability and precision of objects classification.Despite the classification value of hyper-spectral imaging technology within various applications,users often find it difficult to effectively apply in practice because of the effect of light,temperature and wind in outdoor environment.This research presented a new classification model for outdoor farmland objects based on near-infrared(NIR)hyper-spectral images.It involves two steps including region of interest(ROI)acquisition and establishment of classifiers.A distance-based method for quantitative analysis was proposed to optimize the reference pixels in ROI acquisition firstly.Then maximum likelihood(ML)and support vector machine(SVM)were used for farmland objects classification.The performance of the proposed method showed that the total classification accuracy based on the reference pixels was over 97.5%,of which the SVM-M model could reach 99.5%.The research provided an effective method for outdoor farmland image classification.展开更多
Highly symmetric quantum measurements,such as mutually unbiased measurements(MUMs)and general symmetric informationally complete positive-operator-valued measures(GSICPOVMs),play an important role in both foundational...Highly symmetric quantum measurements,such as mutually unbiased measurements(MUMs)and general symmetric informationally complete positive-operator-valued measures(GSICPOVMs),play an important role in both foundational and practical aspects of quantum information theory.Recently,a broad class of symmetric measurements were introduced[K Siudzińska,(2022)Phys.Rev.A 105,042209],which can be viewed as a common generalization of MUMs and GSIC-POVMs.In this work,the role of these symmetric measurements in entanglement detection is studied.More specifically,based on the correlation matrices defined via(informationally complete)symmetric measurements,a separability criterion for arbitrary dimensional bipartite systems is proposed.It is shown that the criterion is stronger than the method provided by Siudzińska,meanwhile,it can unify several popular separability criteria based on MUMs or GSIC-POVMs.Furthermore,using these(informationally complete)symmetric measurements,two efficient criteria are presented to detect the entanglement of tripartite quantum states.The detection power and advantages of these criteria are illustrated through several examples.展开更多
The interaction length induced by Shock Wave/Turbulent Boundary-Layer Interactions(SWTBLIs)in the hypersonic flow was investigated using a scaling analysis,in which the interaction length normalized by the displacemen...The interaction length induced by Shock Wave/Turbulent Boundary-Layer Interactions(SWTBLIs)in the hypersonic flow was investigated using a scaling analysis,in which the interaction length normalized by the displacement thickness of boundary layer was correlated with a corrected non-dimensional separation criterion across the interaction after accounting for the wall temperature effects.A large number of hypersonic SWTBLIs were compiled to examine the scaling analysis over a wide range of Mach numbers,Reynolds numbers,and wall temperatures.The results indicate that the hypersonic SWTBLIs with low Reynolds numbers collapse on the supersonic SWTBLIs,while the hypersonic cases with high Reynolds numbers show a more rapid growth of the interaction length than that with low Reynolds numbers.Thus,two scaling relationships are identified according to different Reynolds numbers for the hypersonic SWTBLIs.The scaling analysis provides valuable guidelines for engineering prediction of the interaction length,and thus,enriches the knowledge of hypersonic SWTBLIs.展开更多
Entanglement is an important resource for quantum information processing.We provide a new entanglement witness to detect the entanglement of an evolving W state.Our results show that the new entanglement witness match...Entanglement is an important resource for quantum information processing.We provide a new entanglement witness to detect the entanglement of an evolving W state.Our results show that the new entanglement witness matches the evolving W state better than other witnesses or methods.The new witness significantly improves the performance of entanglement detection for some three-qubit states.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10374007 and 60472021.
文摘Continuous-variable entanglement in the interacting system of a mesoscopic Josephson junction with a squeezed field is investigated. It is shown that when the cavity field is initially prepared in a squeezed vacuum state and the junction in its lowest energy state, the coupling system can evolve into a two-mode Caussian state. The timedependent characteristic function in the Wigner representation for the system is analytically obtained, and the squeezing degree of the initial cavity field turns out to have not only an apparent enhancing but also a weakening effect on the entanglement of the coupling system under suitable parameter conditions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11501153,11661031,and 11675113)the National Natural Science Foundation of Hainan Province,China(Grant No.20161006)
文摘Separability is an important problem in theory of quantum entanglement. By using the Bloch representation of quantum states in terms of the Heisenberg-Weyl observable basis, we present a new separability criterion for bipartite quantum systems. It is shown that this criterion can be better than the previous ones in detecting entanglement. The results are generalized to multipartite quantum states.
基金supported by the Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing under Grant No.2016CP01,Xi’an University of Technology,Xi’an Science and Technology Plan Projects under Grant No.NC1504(2)the National Natural Science Foundation of China under Grant No.31101075+1 种基金the National High Technology Research and Development of China(863 Program)under Grant No.2013AA10230402,Natural Science Fundamental Research Plan of Shaanxi Province under Grant No.2016JM6038Fundamental Research Funds for the Central Universities,NWSUAF,China,Grant No.2452015060.
文摘The hyper-spectral image contains spectral and spatial information,which increases the ability and precision of objects classification.Despite the classification value of hyper-spectral imaging technology within various applications,users often find it difficult to effectively apply in practice because of the effect of light,temperature and wind in outdoor environment.This research presented a new classification model for outdoor farmland objects based on near-infrared(NIR)hyper-spectral images.It involves two steps including region of interest(ROI)acquisition and establishment of classifiers.A distance-based method for quantitative analysis was proposed to optimize the reference pixels in ROI acquisition firstly.Then maximum likelihood(ML)and support vector machine(SVM)were used for farmland objects classification.The performance of the proposed method showed that the total classification accuracy based on the reference pixels was over 97.5%,of which the SVM-M model could reach 99.5%.The research provided an effective method for outdoor farmland image classification.
基金supported by the National Key R&D Program of China,Grant No.2020YFA0712700the National Natural Science Foundation of China,Grant Nos.11875317 and 61833010
文摘Highly symmetric quantum measurements,such as mutually unbiased measurements(MUMs)and general symmetric informationally complete positive-operator-valued measures(GSICPOVMs),play an important role in both foundational and practical aspects of quantum information theory.Recently,a broad class of symmetric measurements were introduced[K Siudzińska,(2022)Phys.Rev.A 105,042209],which can be viewed as a common generalization of MUMs and GSIC-POVMs.In this work,the role of these symmetric measurements in entanglement detection is studied.More specifically,based on the correlation matrices defined via(informationally complete)symmetric measurements,a separability criterion for arbitrary dimensional bipartite systems is proposed.It is shown that the criterion is stronger than the method provided by Siudzińska,meanwhile,it can unify several popular separability criteria based on MUMs or GSIC-POVMs.Furthermore,using these(informationally complete)symmetric measurements,two efficient criteria are presented to detect the entanglement of tripartite quantum states.The detection power and advantages of these criteria are illustrated through several examples.
基金supported by the National Natural Science Foundation of China(Nos.11772325 and 11621202)。
文摘The interaction length induced by Shock Wave/Turbulent Boundary-Layer Interactions(SWTBLIs)in the hypersonic flow was investigated using a scaling analysis,in which the interaction length normalized by the displacement thickness of boundary layer was correlated with a corrected non-dimensional separation criterion across the interaction after accounting for the wall temperature effects.A large number of hypersonic SWTBLIs were compiled to examine the scaling analysis over a wide range of Mach numbers,Reynolds numbers,and wall temperatures.The results indicate that the hypersonic SWTBLIs with low Reynolds numbers collapse on the supersonic SWTBLIs,while the hypersonic cases with high Reynolds numbers show a more rapid growth of the interaction length than that with low Reynolds numbers.Thus,two scaling relationships are identified according to different Reynolds numbers for the hypersonic SWTBLIs.The scaling analysis provides valuable guidelines for engineering prediction of the interaction length,and thus,enriches the knowledge of hypersonic SWTBLIs.
基金Support from the National Natural Science Foundation of China(Grant No:61871347)。
文摘Entanglement is an important resource for quantum information processing.We provide a new entanglement witness to detect the entanglement of an evolving W state.Our results show that the new entanglement witness matches the evolving W state better than other witnesses or methods.The new witness significantly improves the performance of entanglement detection for some three-qubit states.