期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
Experimental Investigation of Flow Separation Control Using Dielectric Barrier Discharge Plasma Actuators 被引量:1
1
作者 李钢 聂超群 +2 位作者 李轶明 朱俊强 徐燕骥 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第5期605-611,共7页
Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow... Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied. 展开更多
关键词 dielectric barrier discharge PLASMA separation flow control hump model compressor cascade
下载PDF
A modified VLES model for simulation of rotating separation flow in axial flow rotating machinery 被引量:1
2
作者 Hao-ru Zhao Fu-jun Wang +3 位作者 Chao-yue Wang Chang-liang Ye Zhi-feng Yao Qiang Zhong 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第4期570-584,共15页
The internal flow in an axial flow rotating machinery is affected by the rotating characteristics, often accompanied by a strong rotating separation under small flow conditions. At present, the very large eddy simulat... The internal flow in an axial flow rotating machinery is affected by the rotating characteristics, often accompanied by a strong rotating separation under small flow conditions. At present, the very large eddy simulation (VLES) model commonly used for the separation flow simulation still has certain limitations in simulating such rotating separation flow: (1) The Reynolds stress level is overestimated in the near-wall region. (2) The influence of the rotating effect cannot be effectively considered. The above two limitations affect the simulation accuracy of the VLES model for the rotating separation flow under small flow conditions in the axial flow rotating machinery. The objective of this paper is to provide a new hybrid unsteady Reynolds average Navier-Stokes/large eddy simulation (URANS/LES) model suitable for the simulation of the rotating separation flow in an axial flow rotating machinery. Compared with the original VLES method, the modifications are as follows: (1) A Reynolds stress damping function in the near-wall region is introduced to reduce the overestimation of the Reynolds stress caused by the near-wall Reynolds average Navier-Stokes (RANS) behavior of the VLES model. (2) A control function driven by the vortex is introduced to reflect the influence of the rotating effect. Three typical cases are used to verify the calculation accuracy of the modified model. It is shown that the modified model can capture more turbulent vortices based on the URANS grids, and the prediction accuracy of the rotating separation flow is effectively improved. Compared with the original VLES model, the modified model can accurately predict the head change in the hump region of the axial flow pump. 展开更多
关键词 Axial flow rotating machinery rotating separation flow hybrid unsteady Reynolds average Navier-Stokes/large eddy simulation(URANS/LES)model very large eddy simulation(VLES)model
原文传递
Computation method and control strategy of rotating separation flows in hydraulic machinery
3
作者 Chao-yue Wang Fu-jun Wang +3 位作者 Hao Wang Hao-ru Zhao Zhi-feng Yao Ruo-fu Xiao 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第6期1006-1020,共15页
Rotating separation flow(RSF)in hydraulic machinery is characterized by the large flow separations and complex vortical structures induced by the effects of strong rotation,large curvature and multiple wall surfaces,a... Rotating separation flow(RSF)in hydraulic machinery is characterized by the large flow separations and complex vortical structures induced by the effects of strong rotation,large curvature and multiple wall surfaces,and conducting efficient engineering computation and putting forward effective control strategy for the RSF are important topics in the inner flow theory.To meet these engineering requirements,the studies on computational method and control strategy of the RSF are conducted in this paper.In terms of the computational method,the time-scale-driven(TSD)hybrid unsteady Reynolds-averaged Navier-Stokes/large eddy simulation(URANS/LES)modelling strategy is clarified,and an adaptive TSD hybrid model is established based on the RSF characteristics in hydraulic machinery,thereby avoiding the problem of non-monotonic grid convergence and improving the robustness.Besides,a novel vortex-feature-driven idea suitable for the RSF is further developed inspired by it.In terms of the control strategy,the secondary flow generation mechanism in a rotor domain is revealed,and the relationship between natural secondary flows and blade loading distributions is grasped.On the basis of it,an active control strategy with general significance is proposed,and a general alternate loading technique(GALT)is established.Both aspects can provide generalized paradigms with expandable potential,which are of benefit to the efficient computation and effective control of the RSF in hydraulic machinery. 展开更多
关键词 Rotating separation flow hydraulic machinery engineering computation turbulence model flow control blade loading
原文传递
Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing 被引量:3
4
作者 李铮 史志伟 +3 位作者 杜海 孙琪杰 魏晨瑶 耿玺 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第11期116-125,共10页
Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a fl... Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a flying wing model's aerodynamic characteristics. The aerodynamic forces and moments are studied by means of experiment and numerical simulation. The numerical simulation results are in good agreement with experiment results. Both results indicate that the NS-DBD plasma actuators have negligible effect on aerodynamic forces and moment at the angles of attack smaller than 16-. However, significant changes can be achieved with actuation when the model's angle of attack is larger than 16° where the flow separation occurs. The spatial flow field structure results from numerical simulation suggest that the volumetric heat produced by NS-DBD plasma actuator changes the local temperature and density and induces several vortex structures, which strengthen the mixing of the shear layer with the main flow and delay separation or even reattach the separated flow. 展开更多
关键词 nanosecond dielectric barrier discharge flying wing aircraft flow separation control
下载PDF
Flow Separation and Vortex Dynamics in Waves Propagating over A Submerged Quartercircular Breakwater 被引量:2
5
作者 JIANG Xue-lian YANG Tian +1 位作者 ZOU Qing-ping GU Han-bin 《China Ocean Engineering》 SCIE EI CSCD 2018年第5期514-523,共10页
The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model... The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater. 展开更多
关键词 submerged quartercircular breakwater cnoidal wave flow separation vortex dynamics SCOUR
下载PDF
A Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows 被引量:2
6
作者 Shuaibin HAN Shuhai ZHANG Hanxin ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第7期1007-1018,共12页
The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theor... The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theory of unsteady separation for two-dimensional flows. Journal of Fluid Mechanics, 512, 257-311 (2004)). By analyzing the distribution of the finite-time Lyapunov exponent (FTLE) along the no-slip wall, it can be found that the periodic separation takes place at the point of the zero FTLE. This new criterion is verified with an analytical solution of the separation bubble and a numerical simulation of lid-driven cavity flows. 展开更多
关键词 Lagrangian criterion unsteady flow separation finite-time Lyapunov ex-ponent(FTLE) two-dimensional periodic flow
下载PDF
FLUID FLOW SEPARATION CHARACTER ON NOVEL HYBRID JOURNAL BEARING 被引量:4
7
作者 CHEN Shujiang LU Changhou LI Lei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期540-543,共4页
The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and th... The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and the simulation is carried out by using finite difference method. The results show that the lubricant flow status and end leakage quantity are greatly influenced by spiral angle,and that the rotating speed has little influence on the flow status. With advisable geometry design, the separation of lubricant between different oil wedges can be obtained, which can decrease the temperature rise effectively. 展开更多
关键词 Fluid flow separation character Spiral oil wedge flow statusHybrid journal bearing
下载PDF
Flow separation control over an airfoil using continuous alternating current plasma actuator 被引量:1
8
作者 郑建国 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期346-355,共10页
The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to re... The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to report some observations made from our experiment,to which little attention is paid in the previous studies,but which is thought to be important to the understanding of control of complex flow separation with AC DBD.To this end,the response of separated flow to AC plasma actuation is visualized through the time-resolved particle image velocimetry(PIV)measurement,whereas numerical simulation is carried out to complement the experiment.The flow control process at chord-based Reynolds number(Re)of 3.31×105 is investigated.It is found that the response of external flow to plasma forcing is delayed for up to tens of milliseconds and the delay time increases with angle of attack increasing.Also observed is that at the intermediate angle of attack near stall,the forced flow features a well re-organized flow pattern.However,for airfoil at high post-stall angle of attack,the already well suppressed flow field can recover to the massively separated flow state and then reattach to airfoil surface with the flow pattern fluctuating between the two states in an irregular manner.This is contrary to one’s first thought that the forced flow at any angles of attack will become well organized and regular,and reflects the complexity of flow separation control. 展开更多
关键词 dielectric barrier discharge plasma actuator alternating current plasma discharge flow separation flow control delayed response
下载PDF
EXPERIMENTAL INVESTIGATION ON THE TURBULENT COHERENT STRUCTURES OF LAMINAR SEPARATION FLOW OVER A BACKWARD FACING STEP
9
作者 Wang Jinjun Lian Qixiang Lan Shilong(Fluid Mechanics Institute, Beijing University of Aeronautics and Astronautics, Beijing, China, 100083) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1996年第3期175-181,共7页
The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coher... The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coherent structure. the variations of wall shear stress and the boundary layer shape factor are obtained. In the redevelopment region. the detailed analysis is first made for the streak structures in the near wall region and the turbulent boundary layer is formed at (x-xr) / h = 20. 展开更多
关键词 backward facing steps laminar boundary layer separated flow turbulent boundary layer reattached flow
下载PDF
Control of flow separation over a wing model with plasma synthetic jets
10
作者 苏志 宋国正 +5 位作者 宗豪华 梁华 李军 谢理科 刘雪城 孔维良 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第6期135-147,共13页
An array of 30 plasma synthetic jet actuators(PSJAs)is deployed using a modified multichannel discharge circuit to suppress the flow separation over a straight-wing model.The lift and drag of the wing model are measur... An array of 30 plasma synthetic jet actuators(PSJAs)is deployed using a modified multichannel discharge circuit to suppress the flow separation over a straight-wing model.The lift and drag of the wing model are measured by a force balance,and the velocity fields over the suction surface are captured by a particle imaging velocimetry system.Results show that the flow separation of the straight wing originates from the middle of the model and expands towards the wingtips as the angle of attack increases.The flow separation can be suppressed effectively by the PSJAs array.The best flow control effect is achieved at a dimensionless discharge frequency of F^+=1,with the peak lift coefficient increased by 10.5%and the stall angle postponed by 2°.To further optimize the power consumption of the PSJAs,the influence of the density of PSJAs on the flow control effect is investigated.A threshold of the density exits(with the spanwise spacing of PSJAs being 0.2 times of the chord length in the current research),below which the flow control effect starts to deteriorate remarkably.In addition,for comparison purposes,a dielectric barrier discharge(DBD)plasma actuator is installed at the same location of the PSJAs.At the same power consumption,4.9%increase of the peak lift coefficient is achieved by DBD,while that achieved by PSJAs reaches 5.6%. 展开更多
关键词 flow separation plasma synthetic jet DENSITY dielectric barrier discharge
下载PDF
Numerical study on flow separation control over NACA0015 aerofoil using electromagnetic fields
11
作者 Ahmad Sedaghat Mohammad Ali Badri 《Theoretical & Applied Mechanics Letters》 CAS 2013年第5期62-68,共7页
In this study, a flow solver was developed based on the governing RANS equations of compressible flows and was further extended to include the effects of electromagnetic forces namely Lorentz forces. Lorentz forces ma... In this study, a flow solver was developed based on the governing RANS equations of compressible flows and was further extended to include the effects of electromagnetic forces namely Lorentz forces. Lorentz forces may be added as a source term in the governing fluid flow equations. Numerical studies were carried out for NACA0015 aerofoil at high angles of incidences from 15° to 30° and compared with some available cases of experimental and incompressible numerical solutions. The hydrodynamics performance was improved using a magnetic momentum coefficient of up to 0.048. The size of flow separation zone was decreased or completely eliminated by increasing this coefficient. The overall drag was not changed considerably, however the overall lift was increased up to 80 percent at stall angles. 展开更多
关键词 tromagnetic field Lorentz force flow separation NAVIER-STOKES TVD schemes
下载PDF
Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing
12
作者 刘备 梁华 郑博睿 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期88-99,共12页
The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD) plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and... The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD) plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and separated flow.In order to study the mechanism of NS-DBD plasma flow separation control over a swept wing,especially the influence of the actuation frequency,at first,experimental studies of the actuation frequencies at 100 Hz are conducted to validate the numerical simulation method.Then,numerical studies of different actuation frequencies which are 50 Hz,100 Hz,160 Hz,200 Hz,500 Hz,and 1000 Hz,respectively are conducted.The interaction between the plasma-induced vortexes and the separated flow is analyzed.Results show that there is a range of the actuation frequency which includes the frequency(160 Hz) calculated by the average aerodynamic chord length to make the control effect good,but when the actuation frequencies are too low(50 Hz) or too high(1000 Hz),the control effect will get worse.The former is because plasmainduced vortexes disappear in a period within an actuation cycle;the latter is because plasma-induced vortexes cannot develop completely,resulting in a weak vortex intensity. 展开更多
关键词 plasma-induced vortex flow separation control NS-DBD LES
下载PDF
Effect of leading-edge tubercles on the flow over low-aspect-ratio wings at low Reynolds number
13
作者 Pengxin Yang Yichen Zhu Jinjun Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期41-49,共9页
Two-dimensional time-resolved particle image velocimetry(TR-PIV)and stereographic particle image velocimetry(SPIV)techniques were used to investigate the effect of leading-edge tubercles on the flow over low-aspect-ra... Two-dimensional time-resolved particle image velocimetry(TR-PIV)and stereographic particle image velocimetry(SPIV)techniques were used to investigate the effect of leading-edge tubercles on the flow over low-aspect-ratio wing models.The angle of attack is fixed at 10°,and the Reynolds number based on chord length is 5.8×10^(3).It is shown that the leading-edge tubercles can effectively mitigate flow separation in the model and also reduce the contribution of wake vortex to the fluctuating energy of flow.Counter-rotating vortex pairs(CVPs)initiated from the peak of leading-edge tubercles can promote nearby momentum exchange,enhance mixing of the flow and increase the energy contained in the boundary layer,which results in resisting the larger adverse pressure gradient.Therefore,it is concluded that CVPs play an important role in mitigating the flow separation for wings with leading-edge tubercles. 展开更多
关键词 Leading-edge tubercles Low-aspect-ratio flow separation
下载PDF
VORTEX CONTROL BY THE SPANWISE SUCTION FLOW ON THE UPPER SURFACE OF DELTA WING 被引量:2
14
作者 杨国伟 陆夕云 庄礼贤 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1999年第2期116-125,共10页
The numerical investigation has been performed to explore the feasibility of vortex control by leading edge sucking excitation on a delta wing. The results reveal that the flow on the upper surface of the delta wing c... The numerical investigation has been performed to explore the feasibility of vortex control by leading edge sucking excitation on a delta wing. The results reveal that the flow on the upper surface of the delta wing changes significantly in a wide range of the angle of attack. For the vortical flow at moderate angle of attack, the secondary and tertiary vortices are weakened or suppressed, and the total lift is almost unchanged. For the stalled flow at high angle of attack, the leading edge concentrated vortex is recovered, and the lift is enhanced with increasing suction rate. For the bluff-body flow at even high angles of attack, the lift can still be improved. The concentrated vortex disappears on the upper surface, and the load increment is nearly unchanged along the chordwise direction. 展开更多
关键词 vortex control separation flow delta wing numerical simulation
下载PDF
VISCOUS-INVISCID INTERACTING FLOW THEORY 被引量:2
15
作者 Gao Zhi (Institute of Mechanics,Academia Sinica) 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1990年第2期102-110,共9页
In this paper a viscous-inviscid interacting flow theory(IFT)is developed for an incompressible, two-dimensional laminar flow.IFT's main points are as follows.(1)By introducing a concept of interaction lay- er whe... In this paper a viscous-inviscid interacting flow theory(IFT)is developed for an incompressible, two-dimensional laminar flow.IFT's main points are as follows.(1)By introducing a concept of interaction lay- er where the normal momentum exchange is dominating,a new three layer structure is established.(2)Through the conventional manipulations and by introducing an interaction model,both the streamwise and normal length scales are proved to be functions of a single parameter m,which is related to the streamwise pressure gradient and Reynolds number.(3)The approximate equations governing the flow of each layer as well as the whole interaction flow are derived.The present IFT is applicable to both attached and attached-separation bubble-reattached flows, The classical boundary layer theory and Triple-deck theory are shown to be two special cases of the present theory under m=0 and 1/4,respectively.Furthermore IFT provides new distinctions of both the normal and streamwise length scales for flow-field numerical computation and also gives a new approach to developing the simpli- fied Navier-Stokes(SNS)equations. 展开更多
关键词 fluid mechanics viscous flow separation flow boundary layer flow
下载PDF
AN APPLICATION OF TOPOLOGICAL METHOD TO ANALYSING THE THREE-DIMENSIONAL FLOW IN CASCADES(Ⅱ)-TOPOLOGICAL ANALYSIS ON THE VECTOR FIELD PATTERNS OF SKINFRICTIONS AND SECTION STREAMLINES
16
作者 康顺 王仲奇 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第12期1119-1127,共9页
With an application of topological analysis, in this paper the skin-friction line patterns on compressor and turbine cascade surfaces are depicted and the streamline patterns of the secondary flow fields in the cross-... With an application of topological analysis, in this paper the skin-friction line patterns on compressor and turbine cascade surfaces are depicted and the streamline patterns of the secondary flow fields in the cross-section of a curved pipe and a turbine cascade are drawn under given conditions. In addition the structures of vortices within three-dimensional viscous flow fields in cascades are analysed. 展开更多
关键词 topological analysis separation flow three-dimensional flow visualization TURBINE COMPRESSOR vortex
下载PDF
Numerical Studies on Flow Fields Around Buildings in an Urban Street Canyon and Cross-Road 被引量:8
17
作者 程雪玲 胡非 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第2期290-299,共10页
The questions on how vortices are constructed and on the relationship between the flow patterns and concentration distributions in real street canyons are the most pressing questions in pollution control studies. In t... The questions on how vortices are constructed and on the relationship between the flow patterns and concentration distributions in real street canyons are the most pressing questions in pollution control studies. In this paper, the very large eddy simulation (VLES) and large eddy simulation (LES) are applied to calculate the flow and pollutant concentration fields in an urban street canyon and a cross-road respectively. It is found that the flow separations are not only related to the canyon aspect ratios, but also with the flow velocities and wall temperatures. And the turbulent dispersions are so strongly affected by the flow fields that the pollutant concentration distributions can be distinguished from the different aspect ratios, flow velocities and wall temperatures. 展开更多
关键词 street canyon separating flow turbulence dispersion numerical simulation
下载PDF
Comparative assessment of SAS and DES turbulence modeling for massively separated flows 被引量:3
18
作者 Weilin Zheng Chao Yan +1 位作者 Hongkang Liu Dahai Luo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第1期12-21,共10页
Numerical studies of the flow past a circular cylinder at Reynolds number 1.4 × 105 and NACA0021 airfoil at the angle of attack 60° have been carried out by scale-adaptive simulation (SAS) and detached edd... Numerical studies of the flow past a circular cylinder at Reynolds number 1.4 × 105 and NACA0021 airfoil at the angle of attack 60° have been carried out by scale-adaptive simulation (SAS) and detached eddy simu- lation (DES), in comparison with the existing experimental data. The new version of the model developed by Egorov and Menter is assessed, and advantages and disadvantages of the SAS simulation are analyzed in detail to provide guidance for industrial application in the future. Moreover, the mechanism of the scale-adaptive characteristics in separated regions is discussed, which is obscure in previous analyses. It is con- cluded that: the mean flow properties satisfactorily agree with the experimental results for the SAS simulation, although the prediction of the second order turbulent statistics in the near wake region is just reasonable. The SAS model can produce a larger magnitude of the turbulent kinetic energy in the recir- culation bubble, and, consequently, a smaller recirculation region and a more rapid recovery of the mean velocity out- side the recirculation region than the DES approach with the same grid resolution. The vortex shedding is slightly less irregular with the SAS model than with the DES approach, probably due to the higher dissipation of the SAS simulation under the condition of the coarse mesh. 展开更多
关键词 Scale-adaptivelength scale Bluff bodies SIMULATION von Karman Massively separated flows Computational fluid dynamics
下载PDF
Applications of URANS on predicting unsteady turbulent separated flows 被引量:2
19
作者 Jinglei Xu Huiyang Ma Department of Physics, Graduate University of the Chinese Academy of Sciences, 100049 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第3期319-324,共6页
Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practi cal challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,90... Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practi cal challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,900 is numerically investigated by using the technique of unsteady RANS (URANS). Some typical linear and nonlinear eddy viscosity turbulence models (LEVM and NLEVM) and a quadratic explicit algebraic stress model (EASM) are evaluated. Numerical results have shown that a high-performance cubic NLEVM, such as CLS, are superior to the others in simulating turbulent separated flows with unsteady vortex shedding. 展开更多
关键词 URANS Nonlinear eddy viscosity turbulencemodel Separated flows Circular cylinder
下载PDF
In uence of Endwall Boundary Layer Suction on the Flow Fields of a Critically Loaded Di usion Cascade 被引量:3
20
作者 Zhi-Yuan Cao Bo Liu Ting Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第3期101-114,共14页
Boundary layer suction is an e ective method used to delay separations in axial compressors. Most studies on bound?ary layer suction have focused on improving the performance of compressors,whereas few studies investi... Boundary layer suction is an e ective method used to delay separations in axial compressors. Most studies on bound?ary layer suction have focused on improving the performance of compressors,whereas few studies investigated the influence on details of the flow fields,especially vortexes in compressors. CFD method is validated with experi?mental data firstly. Three single?slot and one double?slot endwall boundary layer suction schemes are designed and investigated. In addition to the investigation of aerodynamic performance of the cascades with and without suction,variations in corner open separation,passage vortex,and concentration shedding vortex,which are rarely seen for the flow controlled blades in published literatures,are analyzed. Then,flow models,which are the ultimate aim,of both baseline and aspirated cascades are established. Results show that single?slot endwall suction scheme adjacent to the suction surface can e ectively remove the corner open separation. With suction mass flow rate of 0.85%,the overall loss coe cient and endwall loss coe cient of the cascade are reduced by 25.2% and 48.6%,respectively. Besides,this scheme increases the static pressure rise coe cient of the cascade by 3.2% and the flow turning angle of up to 3.3° at 90% span. The concentration shedding vortex decreases,whereas the passage vortex increases. For single?slot suction schemes near the middle pitchwise of the passage,the concentration shedding vortex increases and the passage vortex is divided into two smaller passage vortexes,which converge into a single?passage vortex near the trailing edge section of the cascade. For the double?slot suction scheme,triple?passage vortexes are presented in the blade passage. Some new vortex structures are discovered,and the novel flow models of aspirated compressor cascade are proposed,which are important to improve the design of multi?stage aspirated compressors. 展开更多
关键词 Axial?flow compressor Di usion cascade flow separation Corner separation Boundary layer suction Passage vortex
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部