The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theor...The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theory of unsteady separation for two-dimensional flows. Journal of Fluid Mechanics, 512, 257-311 (2004)). By analyzing the distribution of the finite-time Lyapunov exponent (FTLE) along the no-slip wall, it can be found that the periodic separation takes place at the point of the zero FTLE. This new criterion is verified with an analytical solution of the separation bubble and a numerical simulation of lid-driven cavity flows.展开更多
Rotating separation flow(RSF)in hydraulic machinery is characterized by the large flow separations and complex vortical structures induced by the effects of strong rotation,large curvature and multiple wall surfaces,a...Rotating separation flow(RSF)in hydraulic machinery is characterized by the large flow separations and complex vortical structures induced by the effects of strong rotation,large curvature and multiple wall surfaces,and conducting efficient engineering computation and putting forward effective control strategy for the RSF are important topics in the inner flow theory.To meet these engineering requirements,the studies on computational method and control strategy of the RSF are conducted in this paper.In terms of the computational method,the time-scale-driven(TSD)hybrid unsteady Reynolds-averaged Navier-Stokes/large eddy simulation(URANS/LES)modelling strategy is clarified,and an adaptive TSD hybrid model is established based on the RSF characteristics in hydraulic machinery,thereby avoiding the problem of non-monotonic grid convergence and improving the robustness.Besides,a novel vortex-feature-driven idea suitable for the RSF is further developed inspired by it.In terms of the control strategy,the secondary flow generation mechanism in a rotor domain is revealed,and the relationship between natural secondary flows and blade loading distributions is grasped.On the basis of it,an active control strategy with general significance is proposed,and a general alternate loading technique(GALT)is established.Both aspects can provide generalized paradigms with expandable potential,which are of benefit to the efficient computation and effective control of the RSF in hydraulic machinery.展开更多
Numerical studies of the flow past a circular cylinder at Reynolds number 1.4 × 105 and NACA0021 airfoil at the angle of attack 60° have been carried out by scale-adaptive simulation (SAS) and detached edd...Numerical studies of the flow past a circular cylinder at Reynolds number 1.4 × 105 and NACA0021 airfoil at the angle of attack 60° have been carried out by scale-adaptive simulation (SAS) and detached eddy simu- lation (DES), in comparison with the existing experimental data. The new version of the model developed by Egorov and Menter is assessed, and advantages and disadvantages of the SAS simulation are analyzed in detail to provide guidance for industrial application in the future. Moreover, the mechanism of the scale-adaptive characteristics in separated regions is discussed, which is obscure in previous analyses. It is con- cluded that: the mean flow properties satisfactorily agree with the experimental results for the SAS simulation, although the prediction of the second order turbulent statistics in the near wake region is just reasonable. The SAS model can produce a larger magnitude of the turbulent kinetic energy in the recir- culation bubble, and, consequently, a smaller recirculation region and a more rapid recovery of the mean velocity out- side the recirculation region than the DES approach with the same grid resolution. The vortex shedding is slightly less irregular with the SAS model than with the DES approach, probably due to the higher dissipation of the SAS simulation under the condition of the coarse mesh.展开更多
Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a fl...Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a flying wing model's aerodynamic characteristics. The aerodynamic forces and moments are studied by means of experiment and numerical simulation. The numerical simulation results are in good agreement with experiment results. Both results indicate that the NS-DBD plasma actuators have negligible effect on aerodynamic forces and moment at the angles of attack smaller than 16-. However, significant changes can be achieved with actuation when the model's angle of attack is larger than 16° where the flow separation occurs. The spatial flow field structure results from numerical simulation suggest that the volumetric heat produced by NS-DBD plasma actuator changes the local temperature and density and induces several vortex structures, which strengthen the mixing of the shear layer with the main flow and delay separation or even reattach the separated flow.展开更多
Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practi cal challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,90...Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practi cal challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,900 is numerically investigated by using the technique of unsteady RANS (URANS). Some typical linear and nonlinear eddy viscosity turbulence models (LEVM and NLEVM) and a quadratic explicit algebraic stress model (EASM) are evaluated. Numerical results have shown that a high-performance cubic NLEVM, such as CLS, are superior to the others in simulating turbulent separated flows with unsteady vortex shedding.展开更多
The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model...The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater.展开更多
The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which sh...The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD(computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.展开更多
Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow...Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied.展开更多
The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and th...The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and the simulation is carried out by using finite difference method. The results show that the lubricant flow status and end leakage quantity are greatly influenced by spiral angle,and that the rotating speed has little influence on the flow status. With advisable geometry design, the separation of lubricant between different oil wedges can be obtained, which can decrease the temperature rise effectively.展开更多
The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to re...The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to report some observations made from our experiment,to which little attention is paid in the previous studies,but which is thought to be important to the understanding of control of complex flow separation with AC DBD.To this end,the response of separated flow to AC plasma actuation is visualized through the time-resolved particle image velocimetry(PIV)measurement,whereas numerical simulation is carried out to complement the experiment.The flow control process at chord-based Reynolds number(Re)of 3.31×105 is investigated.It is found that the response of external flow to plasma forcing is delayed for up to tens of milliseconds and the delay time increases with angle of attack increasing.Also observed is that at the intermediate angle of attack near stall,the forced flow features a well re-organized flow pattern.However,for airfoil at high post-stall angle of attack,the already well suppressed flow field can recover to the massively separated flow state and then reattach to airfoil surface with the flow pattern fluctuating between the two states in an irregular manner.This is contrary to one’s first thought that the forced flow at any angles of attack will become well organized and regular,and reflects the complexity of flow separation control.展开更多
An experimental study was conducted on the interactions of shock wave/turbulence or laminar boundary layer caused by fin-type protuberance, as the lack of detailed understanding of fluctuating pressure loads inside an...An experimental study was conducted on the interactions of shock wave/turbulence or laminar boundary layer caused by fin-type protuberance, as the lack of detailed understanding of fluctuating pressure loads inside and outside the laminar or turbulence boundary layer separation region in hypersonic flow. The changes of fluctuating pressure in separation region were focused on in this paper. The study shows that the existence of fin changes flowfiled on the plate significantly. The laminar boundary layer separation occurs earlier and the separation region is more extensive. Similar flow is observed between a couple of measurement points outside the laminar separation region. However, there are significant differences between the flow inside and outside the separation region. The level of fluctuating pressure of laminar boundary layer is smaller than that in turbulent case. Even so, in laminar case, the peak fluctuating pressure still reaches a high level. Therefore, the structural influence (damage and/or early fatigue) of fluctuating pressure loads caused by the laminar boundary layer separation should not be ignored.展开更多
A pulsed-wire wall probe measurement system was developed in this paper,which can be used for measuring wall Parameters in separated flow- The operating princi-ple was described and the way of probe calibration was gi...A pulsed-wire wall probe measurement system was developed in this paper,which can be used for measuring wall Parameters in separated flow- The operating princi-ple was described and the way of probe calibration was given. Wall parameters of back-ward-facing and forward-facing step flow were measured,and the wall nows structure andcharacters were revealed.展开更多
Flow visualization was used to investigate experimentally the evolution process from symmetrical shedding to staggered shedding of the starting vortex and the phenomenon of secondary separation on an elliptic cylinder...Flow visualization was used to investigate experimentally the evolution process from symmetrical shedding to staggered shedding of the starting vortex and the phenomenon of secondary separation on an elliptic cylinder at moderate Reynolds numbers.The vortex structure of the flow separation was studied.The temporal variation of separation angle and length of wake vortex were given. The photographs and experimental results provided basis for further investigation of the complicated feature of the starting process of unsteady separated flows around an elliptic cylinder.展开更多
The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coher...The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coherent structure. the variations of wall shear stress and the boundary layer shape factor are obtained. In the redevelopment region. the detailed analysis is first made for the streak structures in the near wall region and the turbulent boundary layer is formed at (x-xr) / h = 20.展开更多
Based on the research result on the strake-wing, when the size of a strakeis not large, there is a separation zone near the leading edge of the outwing of thestrake-wing at middle angles of attack. So the idea on sepa...Based on the research result on the strake-wing, when the size of a strakeis not large, there is a separation zone near the leading edge of the outwing of thestrake-wing at middle angles of attack. So the idea on separation control by rotating acone placed near the leading edge is presented. The cone surface consists of the part ofthe wing. The effect of rotating the cone on aerodynamic characteristics of thestrake-wing is investigated. The results show that a rotating surface could play an important role in controlling the flow separation for a 3-dimensional wing. For example,the relative increment in maximum lift coefficient attains 30%. The separation zone issuppressed to a certain extent.展开更多
An array of 30 plasma synthetic jet actuators(PSJAs)is deployed using a modified multichannel discharge circuit to suppress the flow separation over a straight-wing model.The lift and drag of the wing model are measur...An array of 30 plasma synthetic jet actuators(PSJAs)is deployed using a modified multichannel discharge circuit to suppress the flow separation over a straight-wing model.The lift and drag of the wing model are measured by a force balance,and the velocity fields over the suction surface are captured by a particle imaging velocimetry system.Results show that the flow separation of the straight wing originates from the middle of the model and expands towards the wingtips as the angle of attack increases.The flow separation can be suppressed effectively by the PSJAs array.The best flow control effect is achieved at a dimensionless discharge frequency of F^+=1,with the peak lift coefficient increased by 10.5%and the stall angle postponed by 2°.To further optimize the power consumption of the PSJAs,the influence of the density of PSJAs on the flow control effect is investigated.A threshold of the density exits(with the spanwise spacing of PSJAs being 0.2 times of the chord length in the current research),below which the flow control effect starts to deteriorate remarkably.In addition,for comparison purposes,a dielectric barrier discharge(DBD)plasma actuator is installed at the same location of the PSJAs.At the same power consumption,4.9%increase of the peak lift coefficient is achieved by DBD,while that achieved by PSJAs reaches 5.6%.展开更多
In this study, a flow solver was developed based on the governing RANS equations of compressible flows and was further extended to include the effects of electromagnetic forces namely Lorentz forces. Lorentz forces ma...In this study, a flow solver was developed based on the governing RANS equations of compressible flows and was further extended to include the effects of electromagnetic forces namely Lorentz forces. Lorentz forces may be added as a source term in the governing fluid flow equations. Numerical studies were carried out for NACA0015 aerofoil at high angles of incidences from 15° to 30° and compared with some available cases of experimental and incompressible numerical solutions. The hydrodynamics performance was improved using a magnetic momentum coefficient of up to 0.048. The size of flow separation zone was decreased or completely eliminated by increasing this coefficient. The overall drag was not changed considerably, however the overall lift was increased up to 80 percent at stall angles.展开更多
The finite difference method (FDM) is applied in the present paper to solve the unsteady NHS equations for incompressible fluids. ADI and SLOR methods are served for the vorticity equation and the Poisson equation for...The finite difference method (FDM) is applied in the present paper to solve the unsteady NHS equations for incompressible fluids. ADI and SLOR methods are served for the vorticity equation and the Poisson equation for ψ respectively. The upwind scheme is used for the convective terms. The moving boundary conditions are specially treated, and the effects of outlet conditions on the flow field are abo examined. Numerical results obtained show that the spoiler's oscillation induces forming, growing and shedding of the vortices. The shedding frequency of vortices is equal to that of the spoiler's oscillation. The forced unsteady separated flows under the present investigation depend mainly on the reduced frequency. At low reduced frequency, the vortices shed from the spoiler interact weakly with each other, and move downstream at an almost uniform speed of 038 V∞. At high reduced frequency, the interaction between the adjacent vortices strengthens. They close up to and rotate around each other, and eventually, merge into one vortex.展开更多
We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of diff...We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of differential pressure(DP) signals measured from a Venturi meter. It is demonstrated that DP signals of two-phase flow are a linear mixture of DP signals of single phase fluids. The measurement model is a combination of throttle relationship and blind source separation model. In addition, we estimate the mixture matrix using the independent component analysis(ICA) technique. The mixture matrix could be described using the variances of two DP signals acquired from two Venturi meters. The validity of the proposed model was tested in the gas–liquid twophase flow loop facility. Experimental results showed that for most slug flow the relative error is within 10%.We also find that the mixture matrix is beneficial to investigate the flow mechanism of gas–liquid two-phase flow.展开更多
Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th...Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11372340 and 11732016)
文摘The present paper proposes a Lagrangian criterion of unsteady flow separation for two-dimensional periodic flows based on the principle of weighted averaging zero skin-friction given by Haller (HALLER, G. Exact theory of unsteady separation for two-dimensional flows. Journal of Fluid Mechanics, 512, 257-311 (2004)). By analyzing the distribution of the finite-time Lyapunov exponent (FTLE) along the no-slip wall, it can be found that the periodic separation takes place at the point of the zero FTLE. This new criterion is verified with an analytical solution of the separation bubble and a numerical simulation of lid-driven cavity flows.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51836010,U22A20238 and 52209117)the China Postdoctoral Science Foundation(Grant No.2021M703516).
文摘Rotating separation flow(RSF)in hydraulic machinery is characterized by the large flow separations and complex vortical structures induced by the effects of strong rotation,large curvature and multiple wall surfaces,and conducting efficient engineering computation and putting forward effective control strategy for the RSF are important topics in the inner flow theory.To meet these engineering requirements,the studies on computational method and control strategy of the RSF are conducted in this paper.In terms of the computational method,the time-scale-driven(TSD)hybrid unsteady Reynolds-averaged Navier-Stokes/large eddy simulation(URANS/LES)modelling strategy is clarified,and an adaptive TSD hybrid model is established based on the RSF characteristics in hydraulic machinery,thereby avoiding the problem of non-monotonic grid convergence and improving the robustness.Besides,a novel vortex-feature-driven idea suitable for the RSF is further developed inspired by it.In terms of the control strategy,the secondary flow generation mechanism in a rotor domain is revealed,and the relationship between natural secondary flows and blade loading distributions is grasped.On the basis of it,an active control strategy with general significance is proposed,and a general alternate loading technique(GALT)is established.Both aspects can provide generalized paradigms with expandable potential,which are of benefit to the efficient computation and effective control of the RSF in hydraulic machinery.
基金the National Basic Research Program of China ("973" Project) (Grant No. 2009CB724104)
文摘Numerical studies of the flow past a circular cylinder at Reynolds number 1.4 × 105 and NACA0021 airfoil at the angle of attack 60° have been carried out by scale-adaptive simulation (SAS) and detached eddy simu- lation (DES), in comparison with the existing experimental data. The new version of the model developed by Egorov and Menter is assessed, and advantages and disadvantages of the SAS simulation are analyzed in detail to provide guidance for industrial application in the future. Moreover, the mechanism of the scale-adaptive characteristics in separated regions is discussed, which is obscure in previous analyses. It is con- cluded that: the mean flow properties satisfactorily agree with the experimental results for the SAS simulation, although the prediction of the second order turbulent statistics in the near wake region is just reasonable. The SAS model can produce a larger magnitude of the turbulent kinetic energy in the recir- culation bubble, and, consequently, a smaller recirculation region and a more rapid recovery of the mean velocity out- side the recirculation region than the DES approach with the same grid resolution. The vortex shedding is slightly less irregular with the SAS model than with the DES approach, probably due to the higher dissipation of the SAS simulation under the condition of the coarse mesh.
基金supported by Funding of Jiangsu Innovation Program for Graduate Education(No. KYLX16_0310)the Fundamental Research Funds for the Central Universities (No. NP2016406)+1 种基金supported by Graduate Innovation Center in NUAA (No. kfjj20170117)China Postdoctoral Science Foundation (No. 2017M610325)
文摘Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a flying wing model's aerodynamic characteristics. The aerodynamic forces and moments are studied by means of experiment and numerical simulation. The numerical simulation results are in good agreement with experiment results. Both results indicate that the NS-DBD plasma actuators have negligible effect on aerodynamic forces and moment at the angles of attack smaller than 16-. However, significant changes can be achieved with actuation when the model's angle of attack is larger than 16° where the flow separation occurs. The spatial flow field structure results from numerical simulation suggest that the volumetric heat produced by NS-DBD plasma actuator changes the local temperature and density and induces several vortex structures, which strengthen the mixing of the shear layer with the main flow and delay separation or even reattach the separated flow.
文摘Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practi cal challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,900 is numerically investigated by using the technique of unsteady RANS (URANS). Some typical linear and nonlinear eddy viscosity turbulence models (LEVM and NLEVM) and a quadratic explicit algebraic stress model (EASM) are evaluated. Numerical results have shown that a high-performance cubic NLEVM, such as CLS, are superior to the others in simulating turbulent separated flows with unsteady vortex shedding.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51509178 and 51509177)the Natural Science Foundation of Tianjin City(Grant No.14JCYBJC22100)the Natural Science Foundation of Tianjin Education Commission(Grant No.2017KJ046)
文摘The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater.
基金the financial support provided by the National Natural Science Foundation of China (No.51074156)the Natural Science Foundation of China for InnovativeResearch Group (No. 50921002)+1 种基金the Natural Science Foundation of Jiangsu Province of China (No. BK2010002)the Fundamental Research Funds for the Central Universities (No. 2010ZDP01A06)
文摘The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD(computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.
基金National Natural Science Foundation of China(Nos.50676094,50676095,50776086 and 50736007)Fundamental Researches of National Defense in Chinese Academy of Sciences(No.AB20070090)
文摘Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied.
基金This project is supported by National Natural Science Foundation of China (No.50275089)
文摘The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and the simulation is carried out by using finite difference method. The results show that the lubricant flow status and end leakage quantity are greatly influenced by spiral angle,and that the rotating speed has little influence on the flow status. With advisable geometry design, the separation of lubricant between different oil wedges can be obtained, which can decrease the temperature rise effectively.
文摘The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to report some observations made from our experiment,to which little attention is paid in the previous studies,but which is thought to be important to the understanding of control of complex flow separation with AC DBD.To this end,the response of separated flow to AC plasma actuation is visualized through the time-resolved particle image velocimetry(PIV)measurement,whereas numerical simulation is carried out to complement the experiment.The flow control process at chord-based Reynolds number(Re)of 3.31×105 is investigated.It is found that the response of external flow to plasma forcing is delayed for up to tens of milliseconds and the delay time increases with angle of attack increasing.Also observed is that at the intermediate angle of attack near stall,the forced flow features a well re-organized flow pattern.However,for airfoil at high post-stall angle of attack,the already well suppressed flow field can recover to the massively separated flow state and then reattach to airfoil surface with the flow pattern fluctuating between the two states in an irregular manner.This is contrary to one’s first thought that the forced flow at any angles of attack will become well organized and regular,and reflects the complexity of flow separation control.
基金Acknowledgements The authors acknowledge the support from the Key National Natural Science Foundation of China (No. 91116009 & No. 91216114). The support provided by the FD-20 wind tunnel staff is greatly appreciated.
文摘An experimental study was conducted on the interactions of shock wave/turbulence or laminar boundary layer caused by fin-type protuberance, as the lack of detailed understanding of fluctuating pressure loads inside and outside the laminar or turbulence boundary layer separation region in hypersonic flow. The changes of fluctuating pressure in separation region were focused on in this paper. The study shows that the existence of fin changes flowfiled on the plate significantly. The laminar boundary layer separation occurs earlier and the separation region is more extensive. Similar flow is observed between a couple of measurement points outside the laminar separation region. However, there are significant differences between the flow inside and outside the separation region. The level of fluctuating pressure of laminar boundary layer is smaller than that in turbulent case. Even so, in laminar case, the peak fluctuating pressure still reaches a high level. Therefore, the structural influence (damage and/or early fatigue) of fluctuating pressure loads caused by the laminar boundary layer separation should not be ignored.
文摘A pulsed-wire wall probe measurement system was developed in this paper,which can be used for measuring wall Parameters in separated flow- The operating princi-ple was described and the way of probe calibration was given. Wall parameters of back-ward-facing and forward-facing step flow were measured,and the wall nows structure andcharacters were revealed.
基金The project supported by the National Natural Science Foundation of China.
文摘Flow visualization was used to investigate experimentally the evolution process from symmetrical shedding to staggered shedding of the starting vortex and the phenomenon of secondary separation on an elliptic cylinder at moderate Reynolds numbers.The vortex structure of the flow separation was studied.The temporal variation of separation angle and length of wake vortex were given. The photographs and experimental results provided basis for further investigation of the complicated feature of the starting process of unsteady separated flows around an elliptic cylinder.
文摘The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coherent structure. the variations of wall shear stress and the boundary layer shape factor are obtained. In the redevelopment region. the detailed analysis is first made for the streak structures in the near wall region and the turbulent boundary layer is formed at (x-xr) / h = 20.
文摘Based on the research result on the strake-wing, when the size of a strakeis not large, there is a separation zone near the leading edge of the outwing of thestrake-wing at middle angles of attack. So the idea on separation control by rotating acone placed near the leading edge is presented. The cone surface consists of the part ofthe wing. The effect of rotating the cone on aerodynamic characteristics of thestrake-wing is investigated. The results show that a rotating surface could play an important role in controlling the flow separation for a 3-dimensional wing. For example,the relative increment in maximum lift coefficient attains 30%. The separation zone issuppressed to a certain extent.
基金National Natural Science Foundation of China(Nos.12002384 and 11802341)the National Key Laboratory Foundation of China(No.614220210200112)the Academician Workstation Foundation of the Green Aerotechnics Research Institute of Chongqing Jiaotong University(No.GATRI2020C06003)。
文摘An array of 30 plasma synthetic jet actuators(PSJAs)is deployed using a modified multichannel discharge circuit to suppress the flow separation over a straight-wing model.The lift and drag of the wing model are measured by a force balance,and the velocity fields over the suction surface are captured by a particle imaging velocimetry system.Results show that the flow separation of the straight wing originates from the middle of the model and expands towards the wingtips as the angle of attack increases.The flow separation can be suppressed effectively by the PSJAs array.The best flow control effect is achieved at a dimensionless discharge frequency of F^+=1,with the peak lift coefficient increased by 10.5%and the stall angle postponed by 2°.To further optimize the power consumption of the PSJAs,the influence of the density of PSJAs on the flow control effect is investigated.A threshold of the density exits(with the spanwise spacing of PSJAs being 0.2 times of the chord length in the current research),below which the flow control effect starts to deteriorate remarkably.In addition,for comparison purposes,a dielectric barrier discharge(DBD)plasma actuator is installed at the same location of the PSJAs.At the same power consumption,4.9%increase of the peak lift coefficient is achieved by DBD,while that achieved by PSJAs reaches 5.6%.
文摘In this study, a flow solver was developed based on the governing RANS equations of compressible flows and was further extended to include the effects of electromagnetic forces namely Lorentz forces. Lorentz forces may be added as a source term in the governing fluid flow equations. Numerical studies were carried out for NACA0015 aerofoil at high angles of incidences from 15° to 30° and compared with some available cases of experimental and incompressible numerical solutions. The hydrodynamics performance was improved using a magnetic momentum coefficient of up to 0.048. The size of flow separation zone was decreased or completely eliminated by increasing this coefficient. The overall drag was not changed considerably, however the overall lift was increased up to 80 percent at stall angles.
基金The project is supported by the National Nature Science Foundation of China(NNSFC)
文摘The finite difference method (FDM) is applied in the present paper to solve the unsteady NHS equations for incompressible fluids. ADI and SLOR methods are served for the vorticity equation and the Poisson equation for ψ respectively. The upwind scheme is used for the convective terms. The moving boundary conditions are specially treated, and the effects of outlet conditions on the flow field are abo examined. Numerical results obtained show that the spoiler's oscillation induces forming, growing and shedding of the vortices. The shedding frequency of vortices is equal to that of the spoiler's oscillation. The forced unsteady separated flows under the present investigation depend mainly on the reduced frequency. At low reduced frequency, the vortices shed from the spoiler interact weakly with each other, and move downstream at an almost uniform speed of 038 V∞. At high reduced frequency, the interaction between the adjacent vortices strengthens. They close up to and rotate around each other, and eventually, merge into one vortex.
基金Supported by the National Natural Science Foundation of China(51304231)the Natural Science Foundation of Shandong Province(ZR2010EQ015)
文摘We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of differential pressure(DP) signals measured from a Venturi meter. It is demonstrated that DP signals of two-phase flow are a linear mixture of DP signals of single phase fluids. The measurement model is a combination of throttle relationship and blind source separation model. In addition, we estimate the mixture matrix using the independent component analysis(ICA) technique. The mixture matrix could be described using the variances of two DP signals acquired from two Venturi meters. The validity of the proposed model was tested in the gas–liquid twophase flow loop facility. Experimental results showed that for most slug flow the relative error is within 10%.We also find that the mixture matrix is beneficial to investigate the flow mechanism of gas–liquid two-phase flow.
基金supported by National Natural Science Foundation(52204050)Sichuan Science and Technology Program(2021ZHCG0013,22ZDYF3009)。
文摘Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.