In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve ...In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.展开更多
The composition of low temperature pyrolysis coal tar has an effect on its further processing and reasomble utlization In this paper, the compeition or coal tars produced from both low temperature pyroysis in a fluidi...The composition of low temperature pyrolysis coal tar has an effect on its further processing and reasomble utlization In this paper, the compeition or coal tars produced from both low temperature pyroysis in a fluidized bed aud flash pyrolysis with solid heat carrier have been investigated by the methch of fractional seperation and Gas Chromatography-Mass Spectrometry (GC-MS)- It is observed that the degree of coalification maceral and secondary reaction temperature (freeboard temperature in a fluidized bed) have some iufluence on the composition of coal tars- The main compoundes are phenol cresols,xylenols, naphthalene, alkylnaphthalenes, antbraceue, phenanthrene,acenaphthylene, fluoren, indene and so展开更多
BACKGROUND Adipose-derived stem cells(ADSCs)and the stromal vascular fraction(SVF)have garnered substantial interest in regenerative medicine due to their potential to treat a wide range of conditions.Traditional enzy...BACKGROUND Adipose-derived stem cells(ADSCs)and the stromal vascular fraction(SVF)have garnered substantial interest in regenerative medicine due to their potential to treat a wide range of conditions.Traditional enzymatic methods for isolating these cells face challenges such as high costs,lengthy processing time,and regulatory complexities.AIM This systematic review aimed to assess the efficacy and practicality of nonenzymatic,mechanical methods for isolating SVF and ADSCs,comparing these to conventional enzymatic approaches.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines,a comprehensive literature search was conducted across multiple databases.Studies were selected based on inclusion criteria focused on non-enzymatic isolation methods for SVF and ADSCs from adipose tissue.The risk of bias was assessed,and a qualitative synthesis of findings was performed due to the methodological heterogeneity of the included studies.RESULTS Nineteen studies met the inclusion criteria,highlighting various mechanical techniques such as centrifugation,vortexing,and ultrasonic cavitation.The review identified significant variability in cell yield and viability,and the integrity of isolated cells across different non-enzymatic methods compared to enzymatic procedures.Despite some advantages of mechanical methods,including reduced processing time and avoidance of enzymatic reagents,the evidence suggests a need for optimization to match the cell quality and therapeutic efficacy achievable with enzymatic isolation.CONCLUSION Non-enzymatic,mechanical methods offer a promising alternative to enzymatic isolation of SVF and ADSCs,potentially simplifying the isolation process and reducing regulatory hurdles.However,further research is necessary to standardize these techniques and ensure consistent,high-quality cell yields for clinical applications.The development of efficient,safe,and reproducible non-enzymatic isolation methods could significantly advance the field of regenerative medicine.展开更多
Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters us...Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters used in the West-East natural gas transmission project. The comparison of the original pressure drop of clean filters and the evolution of pressure drop as liquid droplets deposited in the filter media are described. The original pressure drops of these filters were similar but the pressure drops at a steady state were different. Fractional efficiency was used to study the separation performance of cartridge filters. Droplets at the outlet of the filters had small diameters, no more than 3 μm, but were very numerous. The effect of filtration velocity on gas-liquid separation performance was analyzed. Higher filtration velocity indicated better gas-liquid separation performance. Finally the quality factor related to pressure drop and filtration efficiency was applied to evaluate the gas-liquid separation performance.展开更多
This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, t...This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, the numerical calculation was carried out using an algebraic Reynolds stress model (ASM) and the standard k-ε model. The modelling of turbulence of com-pressible, complex flows used in the simulation is discussed. Emphasis is given to the derivation of the ASM for 2D axisymmet-rical flows, particularly to the model constants in the algebraic Reynolds stress equations. The TEFESS code, based on a staggered Finite Volume approach with the standard k-ε model and first-order numerical schemes, was used to carry out all the computations. The predicted results for strongly swirling turbulent compressible flow in a vortex tube suggested that the use of the ASM leads to better agreement between the numerical results and experimental data, while the k-ε model cannot capture the stabilizing effect of the swirl.展开更多
In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results a...In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.展开更多
This research aims to simulate a gravity flow fractionation—the process to fractionate erythrocytes through gravitational field using ANSYS simulation software. A particular microfluidic channel was designed as a sep...This research aims to simulate a gravity flow fractionation—the process to fractionate erythrocytes through gravitational field using ANSYS simulation software. A particular microfluidic channel was designed as a separation device. The gravitational equilibrium conditions of the erythrocytes and gravitational field as the parameters were chosen, then deriving the erythrocytes’ path through numerical simulations. After the actual analog measurements, there is no big difference between the flow velocity and the pressure under +/–10% atmosphere condition. According to the simulation results, the particle with the size 8 μm (similar to the erythrocyte size) can be separated to the outside channel and discharged from the collecting area, other particles with the size 9 μm will stay in the fluid motion and can be collected in the final collection area for preservation. Through the analog analysis by using the software-ANSYS-Fluent, the complete flowing path of the particles and the feasibility of the Gravity-Flow Fractionation can be directly proven.展开更多
Anaerobic digestion(AD)as a waste management method has the potential to reduce greenhouse gas emissions while pro-ducing renewable energy,making it a viable option for managing the organic fraction of municipal solid...Anaerobic digestion(AD)as a waste management method has the potential to reduce greenhouse gas emissions while pro-ducing renewable energy,making it a viable option for managing the organic fraction of municipal solid waste(OFMSW).OFMSW characteristics can vary depending on factors such as waste source,composition and separation units.The charac-teristics of OFMSW are critical for analyzing and monitoring the AD process to optimize biogas production.In this study,the waste composition and physicochemical characteristics of the mechanically separated OFMSW(ms-OFMSW)were determined at a full-scale AD plant in Turkiye.The ms-OFMSW samples were collected monthly after mechanical separation and were subsequently sent to the anaerobic digester.The composition and physicochemical characteristics of the samples were determined by manual sorting.The results showed that the majority of the ms-OFMSW(76.45%±1.71%)was organic,while 8.99%±1.56%was recyclable and 14.56%±1.69%was non-recyclable.Loss of environmental benefits for the recyclable materials was determined using a free online tool provided by Environmental Protection Agency.Metals(399.7 GJ)and plas-tics(403.7 GJ)both saved nearly the same amount of energy while metals saved the most water(421.8 m3),with the greatest positive impact.Greenhouse benefits ranged from 3 tons to 40 tons of carbon dioxide equivalent for each waste stream.These findings suggest that efficient pre-separation units can improve the anaerobic digestibility of OFMSW,while also providing greater environmental benefits by preventing recyclable waste from the anaerobic digester.In addition to encouraging source separation applications,this study demonstrates the need for improved technologies to separate OFMSW from mixed MSW.展开更多
A vacuum membrane distillation(VMD)process with permeate fractional condensation on membrane downstream has been developed for simultaneous recovery of phosphorus and nitrogen from liquid digestate.The polytetrafluoro...A vacuum membrane distillation(VMD)process with permeate fractional condensation on membrane downstream has been developed for simultaneous recovery of phosphorus and nitrogen from liquid digestate.The polytetrafluoroethylene(PTFE)membrane flux could reach 6000 g·m-2·h-1 with the rejection efficiency of total phosphorus(TP)over 0.99,under the condition of flowrate being 120 L·h-1 and temperature being 40°C.Membrane fouling occurred with a film of organics and microorganism deposited on the surface of the membrane.Membrane flux could be reversed after the membrane was rinsed by water.Higher feed temperature and flowrate could improve the membrane flux,while hardly affect the rejection efficiency of total phosphorus.The concentration of TP could reach 1600 mg·L-1 after membrane distillation,which is about 5 times of that in initial liquid digestate.On the downstream of the membrane,some of the permeate vapor was condensed under the vacuum condition and most of water was collected here.The remaining vapor enriched with total nitrogen(TN)was compressed and pumped to the atmospheric condition to condense.The TN concentration in atmospheric condensate was as high as 7000 mg·L-1 with the process separation factor for ammonia being enhanced to 114.展开更多
Evoked potentials (EPs) have been widely used to quantify neurological system properties. Tra-ditional EP analysis methods are developed under the condition that the background noises in EP are Gaussian distributed. A...Evoked potentials (EPs) have been widely used to quantify neurological system properties. Tra-ditional EP analysis methods are developed under the condition that the background noises in EP are Gaussian distributed. Alpha stable distribution, a generalization of Gaussian, is better for modeling impulsive noises than Gaussian distribution in biomedical signal proc-essing. Conventional blind separation and es-timation method of evoked potentials is based on second order statistics or high order Statis-tics. Conventional blind separation and estima-tion method of evoked potentials is based on second order statistics (SOS). In this paper, we propose a new algorithm based on minimum dispersion criterion and fractional lower order statistics. The simulation experiments show that the proposed new algorithm is more robust than the conventional algorithm.展开更多
基金supported by the National Natural Science Foundation of China(11072134 and 11102102)
文摘In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.
文摘The composition of low temperature pyrolysis coal tar has an effect on its further processing and reasomble utlization In this paper, the compeition or coal tars produced from both low temperature pyroysis in a fluidized bed aud flash pyrolysis with solid heat carrier have been investigated by the methch of fractional seperation and Gas Chromatography-Mass Spectrometry (GC-MS)- It is observed that the degree of coalification maceral and secondary reaction temperature (freeboard temperature in a fluidized bed) have some iufluence on the composition of coal tars- The main compoundes are phenol cresols,xylenols, naphthalene, alkylnaphthalenes, antbraceue, phenanthrene,acenaphthylene, fluoren, indene and so
文摘BACKGROUND Adipose-derived stem cells(ADSCs)and the stromal vascular fraction(SVF)have garnered substantial interest in regenerative medicine due to their potential to treat a wide range of conditions.Traditional enzymatic methods for isolating these cells face challenges such as high costs,lengthy processing time,and regulatory complexities.AIM This systematic review aimed to assess the efficacy and practicality of nonenzymatic,mechanical methods for isolating SVF and ADSCs,comparing these to conventional enzymatic approaches.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines,a comprehensive literature search was conducted across multiple databases.Studies were selected based on inclusion criteria focused on non-enzymatic isolation methods for SVF and ADSCs from adipose tissue.The risk of bias was assessed,and a qualitative synthesis of findings was performed due to the methodological heterogeneity of the included studies.RESULTS Nineteen studies met the inclusion criteria,highlighting various mechanical techniques such as centrifugation,vortexing,and ultrasonic cavitation.The review identified significant variability in cell yield and viability,and the integrity of isolated cells across different non-enzymatic methods compared to enzymatic procedures.Despite some advantages of mechanical methods,including reduced processing time and avoidance of enzymatic reagents,the evidence suggests a need for optimization to match the cell quality and therapeutic efficacy achievable with enzymatic isolation.CONCLUSION Non-enzymatic,mechanical methods offer a promising alternative to enzymatic isolation of SVF and ADSCs,potentially simplifying the isolation process and reducing regulatory hurdles.However,further research is necessary to standardize these techniques and ensure consistent,high-quality cell yields for clinical applications.The development of efficient,safe,and reproducible non-enzymatic isolation methods could significantly advance the field of regenerative medicine.
文摘Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters used in the West-East natural gas transmission project. The comparison of the original pressure drop of clean filters and the evolution of pressure drop as liquid droplets deposited in the filter media are described. The original pressure drops of these filters were similar but the pressure drops at a steady state were different. Fractional efficiency was used to study the separation performance of cartridge filters. Droplets at the outlet of the filters had small diameters, no more than 3 μm, but were very numerous. The effect of filtration velocity on gas-liquid separation performance was analyzed. Higher filtration velocity indicated better gas-liquid separation performance. Finally the quality factor related to pressure drop and filtration efficiency was applied to evaluate the gas-liquid separation performance.
文摘This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, the numerical calculation was carried out using an algebraic Reynolds stress model (ASM) and the standard k-ε model. The modelling of turbulence of com-pressible, complex flows used in the simulation is discussed. Emphasis is given to the derivation of the ASM for 2D axisymmet-rical flows, particularly to the model constants in the algebraic Reynolds stress equations. The TEFESS code, based on a staggered Finite Volume approach with the standard k-ε model and first-order numerical schemes, was used to carry out all the computations. The predicted results for strongly swirling turbulent compressible flow in a vortex tube suggested that the use of the ASM leads to better agreement between the numerical results and experimental data, while the k-ε model cannot capture the stabilizing effect of the swirl.
文摘In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.
文摘This research aims to simulate a gravity flow fractionation—the process to fractionate erythrocytes through gravitational field using ANSYS simulation software. A particular microfluidic channel was designed as a separation device. The gravitational equilibrium conditions of the erythrocytes and gravitational field as the parameters were chosen, then deriving the erythrocytes’ path through numerical simulations. After the actual analog measurements, there is no big difference between the flow velocity and the pressure under +/–10% atmosphere condition. According to the simulation results, the particle with the size 8 μm (similar to the erythrocyte size) can be separated to the outside channel and discharged from the collecting area, other particles with the size 9 μm will stay in the fluid motion and can be collected in the final collection area for preservation. Through the analog analysis by using the software-ANSYS-Fluent, the complete flowing path of the particles and the feasibility of the Gravity-Flow Fractionation can be directly proven.
基金the Scientific Research Project supported by The Istanbul Technical University,Turkiye(Yagmur Kabakci,Project No.MDK-2019-42183)The authors gratefully acknowledge to Duzce Solid Waste Association,Project No.5218B04.
文摘Anaerobic digestion(AD)as a waste management method has the potential to reduce greenhouse gas emissions while pro-ducing renewable energy,making it a viable option for managing the organic fraction of municipal solid waste(OFMSW).OFMSW characteristics can vary depending on factors such as waste source,composition and separation units.The charac-teristics of OFMSW are critical for analyzing and monitoring the AD process to optimize biogas production.In this study,the waste composition and physicochemical characteristics of the mechanically separated OFMSW(ms-OFMSW)were determined at a full-scale AD plant in Turkiye.The ms-OFMSW samples were collected monthly after mechanical separation and were subsequently sent to the anaerobic digester.The composition and physicochemical characteristics of the samples were determined by manual sorting.The results showed that the majority of the ms-OFMSW(76.45%±1.71%)was organic,while 8.99%±1.56%was recyclable and 14.56%±1.69%was non-recyclable.Loss of environmental benefits for the recyclable materials was determined using a free online tool provided by Environmental Protection Agency.Metals(399.7 GJ)and plas-tics(403.7 GJ)both saved nearly the same amount of energy while metals saved the most water(421.8 m3),with the greatest positive impact.Greenhouse benefits ranged from 3 tons to 40 tons of carbon dioxide equivalent for each waste stream.These findings suggest that efficient pre-separation units can improve the anaerobic digestibility of OFMSW,while also providing greater environmental benefits by preventing recyclable waste from the anaerobic digester.In addition to encouraging source separation applications,this study demonstrates the need for improved technologies to separate OFMSW from mixed MSW.
基金Project(2019YFC1803601)supported by the National Key Research and Development Program of ChinaProject(2022)supported by the Complementary Fund from the Guizhou Provincial Department of Science and Technology,China。
基金supported by the Fundamental Research Funds for the Central Universities(No.20822041B4013)Key Laboratory of Development and Application of Rural Renewable Energy,Ministry of Agriculture and Rural Affairs,China(No.18H0491)。
文摘A vacuum membrane distillation(VMD)process with permeate fractional condensation on membrane downstream has been developed for simultaneous recovery of phosphorus and nitrogen from liquid digestate.The polytetrafluoroethylene(PTFE)membrane flux could reach 6000 g·m-2·h-1 with the rejection efficiency of total phosphorus(TP)over 0.99,under the condition of flowrate being 120 L·h-1 and temperature being 40°C.Membrane fouling occurred with a film of organics and microorganism deposited on the surface of the membrane.Membrane flux could be reversed after the membrane was rinsed by water.Higher feed temperature and flowrate could improve the membrane flux,while hardly affect the rejection efficiency of total phosphorus.The concentration of TP could reach 1600 mg·L-1 after membrane distillation,which is about 5 times of that in initial liquid digestate.On the downstream of the membrane,some of the permeate vapor was condensed under the vacuum condition and most of water was collected here.The remaining vapor enriched with total nitrogen(TN)was compressed and pumped to the atmospheric condition to condense.The TN concentration in atmospheric condensate was as high as 7000 mg·L-1 with the process separation factor for ammonia being enhanced to 114.
文摘Evoked potentials (EPs) have been widely used to quantify neurological system properties. Tra-ditional EP analysis methods are developed under the condition that the background noises in EP are Gaussian distributed. Alpha stable distribution, a generalization of Gaussian, is better for modeling impulsive noises than Gaussian distribution in biomedical signal proc-essing. Conventional blind separation and es-timation method of evoked potentials is based on second order statistics or high order Statis-tics. Conventional blind separation and estima-tion method of evoked potentials is based on second order statistics (SOS). In this paper, we propose a new algorithm based on minimum dispersion criterion and fractional lower order statistics. The simulation experiments show that the proposed new algorithm is more robust than the conventional algorithm.