By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution ...By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution is equal to the result of separation of variables. As a result, the non-linear characteristic equations resulting from the method of separation of variables are transformed into polynomial equations that can provide a foundation for approximate computation and asymptotic analysis.展开更多
The separation of variables method was successfully used to resolve the spherically symmetric dynamic thermoelastic problem for a spherically isotropic elastic hollow sphere. Use of the integral transform can be avoid...The separation of variables method was successfully used to resolve the spherically symmetric dynamic thermoelastic problem for a spherically isotropic elastic hollow sphere. Use of the integral transform can be avoided by means of this method, which is also appropriate for an arbitrary thickness hollow sphere subjected to arbitrary thermal and mechanical loads. Numerical results are presented to show the dynamic stress responses in the uniformly heated hollow spheres.展开更多
Based on the mathematical model of the bending of the incompressible saturated poroelastic beam with axial diffusion, the qUasi-static bendings of the simply supported poroelastic beam subjected to a suddenly applied ...Based on the mathematical model of the bending of the incompressible saturated poroelastic beam with axial diffusion, the qUasi-static bendings of the simply supported poroelastic beam subjected to a suddenly applied constant load were investigated, and the analytical solutions were obtained for different diffusion conditions of the pore fluid at the beam ends. The deflections, the bending moments of the solid skeleton and the equivalent couples of the pore pressures were presented in figures. It is also shown that the behavior of the saturated poroelastic beams depends closely on the diffusion conditions at the beam ends, especially for the equivalent couples of the pore pressures. It is found that the Mandel-Cryer effect also exists in the bending of the saturated poroelastic beams under specific diffusion conditions at the beam ends.展开更多
The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method i...The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method is suitable to calculate the ground state of the quantum systems,it has been improved to calculate the higher excited states directly.The improvement is based on modifying the iterative process involved in this method to include two procedures.The first is known as cooling steps and the second is known as a heating step.By determining the required length of the cooling iteration steps using suitable excitation energy estimate,and repeating these two procedures using suitable initial guess function for sufficient times.This modified iteration will lead automatically to the desired excited state.In the two dimensional finite rectangular well potential problem both of the suitable excitation energy and the suitable initial guess wave function are calculated analytically using the separation of variables technique.展开更多
Finding exact solutions for Riemann–Liouville(RL)fractional equations is very difficult.We propose a general method of separation of variables to study the problem.We obtain several general results and,as application...Finding exact solutions for Riemann–Liouville(RL)fractional equations is very difficult.We propose a general method of separation of variables to study the problem.We obtain several general results and,as applications,we give nontrivial exact solutions for some typical RL fractional equations such as the fractional Kadomtsev–Petviashvili equation and the fractional Langmuir chain equation.In particular,we obtain non-power functions solutions for a kind of RL time-fractional reaction–diffusion equation.In addition,we find that the separation of variables method is more suited to deal with high-dimensional nonlinear RL fractional equations because we have more freedom to choose undetermined functions.展开更多
基金Supported by the National Natural Science Foundation of Chinathe Doctoral Training of the State Education Commission of China
文摘By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution is equal to the result of separation of variables. As a result, the non-linear characteristic equations resulting from the method of separation of variables are transformed into polynomial equations that can provide a foundation for approximate computation and asymptotic analysis.
文摘The separation of variables method was successfully used to resolve the spherically symmetric dynamic thermoelastic problem for a spherically isotropic elastic hollow sphere. Use of the integral transform can be avoided by means of this method, which is also appropriate for an arbitrary thickness hollow sphere subjected to arbitrary thermal and mechanical loads. Numerical results are presented to show the dynamic stress responses in the uniformly heated hollow spheres.
基金Project supported by the National Natural Science Foundation of China (Grant No.10272070), and the Shanghai Leading Academic Discipline Project (Grant No.Y0103)
文摘Based on the mathematical model of the bending of the incompressible saturated poroelastic beam with axial diffusion, the qUasi-static bendings of the simply supported poroelastic beam subjected to a suddenly applied constant load were investigated, and the analytical solutions were obtained for different diffusion conditions of the pore fluid at the beam ends. The deflections, the bending moments of the solid skeleton and the equivalent couples of the pore pressures were presented in figures. It is also shown that the behavior of the saturated poroelastic beams depends closely on the diffusion conditions at the beam ends, especially for the equivalent couples of the pore pressures. It is found that the Mandel-Cryer effect also exists in the bending of the saturated poroelastic beams under specific diffusion conditions at the beam ends.
文摘The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method is suitable to calculate the ground state of the quantum systems,it has been improved to calculate the higher excited states directly.The improvement is based on modifying the iterative process involved in this method to include two procedures.The first is known as cooling steps and the second is known as a heating step.By determining the required length of the cooling iteration steps using suitable excitation energy estimate,and repeating these two procedures using suitable initial guess function for sufficient times.This modified iteration will lead automatically to the desired excited state.In the two dimensional finite rectangular well potential problem both of the suitable excitation energy and the suitable initial guess wave function are calculated analytically using the separation of variables technique.
文摘Finding exact solutions for Riemann–Liouville(RL)fractional equations is very difficult.We propose a general method of separation of variables to study the problem.We obtain several general results and,as applications,we give nontrivial exact solutions for some typical RL fractional equations such as the fractional Kadomtsev–Petviashvili equation and the fractional Langmuir chain equation.In particular,we obtain non-power functions solutions for a kind of RL time-fractional reaction–diffusion equation.In addition,we find that the separation of variables method is more suited to deal with high-dimensional nonlinear RL fractional equations because we have more freedom to choose undetermined functions.