Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of ...Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of gravity.W-MEL membranes were grown on stainless steel (SS) meshes through in-situ hydrothermal growth method facilitated with (3-aminopropyl)triethoxysilane (APTES) modification of stainless steel meshes,which promote the heterogeneous nucleation and crystal growth of W-MEL zeolites onto the mesh surface.W-MEL membranes were grown on different mesh size supports to investigate the effect of mesh size on the separation performance of the membrane.The assynthesized W-MEL membrane supported on 500 mesh (25μm)(W-MEL-500) exhibit the hydrophilic nature with a water contact angle of 11.8°and delivers the best hexane/water mixture separation with a water flux and separation efficiency of 46247 L·m^(-2)·h^(-1)and 99.5%,respectively.The wettability of W-MEL membranes was manipulated from hydrophilic to hydrophobic nature by chemically modifying with the fluorine-free compounds (hexadecyltrimethoxysilane (HDTMS) and dodecyltrimethoxysilane(DDTMS)) to achieve efficient oil-permselective separation of heavy oils from water.Among the hydrophobically modified W-MEL membranes,W-MEL-500-HDTMS having a water contact angle of146.4°delivers the best separation performance for dichloromethane/water mixtures with a constant oil flux and separation efficiency of 61490 L·m^(-2)·h^(-1)and 99.2%,respectively along with the stability tested up to 20 cycles.Both W-MEL-500-HDTMS and W-MEL-500-DDTMS membranes also exhibit similar separation performances for the separation of heavy oil from sea water along with a 20-fold lower corrosion rate in comparison with the bare stainless-steel mesh,indicating their excellent stability in seawater.Compared to the reported zeolite membranes for oil/water separation,the as-synthesized and hydrophobically modified W-MEL membranes shows competitive separation performances in terms of flux and separation efficiency,demonstrating the good potentiality for oil/water separation.展开更多
This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil...This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil–water separation.The obtained ME-g-PLMA sponge had an excellent pore structure with superhydrophobic(water contact angle of 154°)and superoleophilic properties.It can absorb various types of oils up to 66–168 times its mass.The ME-g-PLMA sponge can continuously separate oil slicks in water by connecting a pump or separating oil underwater with a gravity-driven device.In addition,it maintained its highly hydrophobic properties even after long-term immersion in different corrosive solutions and repeated oil adsorption.The modified ME-g-PLMA sponge exhibited excellent separation properties and potential for oil spill cleanup.展开更多
The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative ana...The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative analysis of interactions in oil-water separation is rarely recognized.Herein,we constructed an adaptable wettability membrane with multiple polymer networks by polydopamine(PDA)and mussel-inspired amphiphilic polymer.Based on the Owens three-probe liquid method,the surface energy of the modified membrane was verified to meet the adaptive wettability conditions,with surface energies(γ-8)of 147.6 mJ m^(−2)(superhydrophilic/underwater superoleophobic)and 49.87 mJ m^(−2)(superhydrophobic/superoleophobic),respectively.The adhesion or repulsion of the membrane to the oil phase under different conditions during the separation process was quantified by the chemical probe AFM technique.In addition,the oil-water selective separation mechanism was further analyzed in a simplified membrane microchannel model.The results show that the different wetting produces capillary additional pressure in opposite directions,resulting in different energies to be overcome when the oil or water passes through the microchannels,thus achieving selective separation.展开更多
Discharging untreated oily wastewater into the environment disrupts the ecological balance,which is a global problem that requires urgent solutions.Superhydrophilic and superoleophilic fibrous medium(FM)effectively se...Discharging untreated oily wastewater into the environment disrupts the ecological balance,which is a global problem that requires urgent solutions.Superhydrophilic and superoleophilic fibrous medium(FM)effectively separated oil–water emulsion as it was hydrophobic underwater.But its separation efficiencies(SEs)first increased to 98.9%,then dropped to 97.6%in 10 min because of oil-fouling.To tackle this problem,FM deposited with 0%–10%silica nanoparticle(NPsFMs),then coated by fluorocarbon polymer(X-[CH_(2)CH_(2)O]nCH_(2)CH_(2)O-Y-NH-COOCH_(2)C4F9)(FCNPs FMs),was used to enhance its roughness and regulate its initial wettability to improve the anti-fouling property.FCFM and FCNPs FMs were hydrophobic and oleophobic in air and oleophobic underwater.Their water contact angles,oil contact angles and oil contact angles were 115.3°–121.1°,128.8°–136.5°,and 131.6°–136.7°,respectively,meeting the requirement of 90°–140°for coalescence separation.FCNPs FM-5 had the best separation performance with a constant value of 99.8%in 10 min,while that of FCNPs FM-10 slightly decreased to 99.5%.Theoretical released droplet(TRD)diameter,calculated by the square root of the product of pore radius and fiber diameter,was used for the evaluation of coalescence performance.Analyzed by two ideal models,TRD diameter and fiber diameter showed a parabola type relationship,proving that the separation efficiency was a collaborative work of wettability,pore size and fiber diameter.Also,it explained the SEs reduction from FCNPs FM-5 to FCNPs FM-10 was revelent to the three parameters.Moreover,FCNPsFMs effectively separated emulsions stabilized by cationic surfactant CTAB(SEs:97.3%–98.4%)and anionic surfactant SDBS(SEs:91.3%–93.4%).But they had an adverse effect on nonionic surfactant Tween-80 emulsion separation(SEs:94.0%–71.76%).Emulsions made by diverse oils can be effectively separated:octane(SEs:99.4%–100%),rapeseed oil(SEs:97.3%–98.8%),and diesel(SEs:95.2%–97.0%).These findings provide new insights for designing novel materials for oil–water separation by coalescence mechanism.展开更多
In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modific...In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modification with n-dodecyl mercaptan(DDT). This method provides a new strategy to fabricate superhydrophobic PU sponge with a water contact angle of 157° for absorbing oil with low cost and in large scale. It exhibits the strong absorption capacity and highly selective characteristic for various kinds of oils which can be recycled by simple squeezing. Besides, the as-prepared sponge can deal with the floating and underwater oils, indicating its application value in handling oil spills and domestic oily wastewater. The good self-cleaning ability shows the potential to clear the pollutants due to the ultralow adhesion to water. Especially, the most important point is that the superhydrophobic sponge can continuously and effectively separate the oil/water mixture against the condition of turbulent disturbance by using our designed device system, which exhibit its good superhydrophobicity, strong stability.Furthermore, the SS-PU still maintained stable absorption performance after 150 cycle tests without losing capacity obviously, showing excellent durability in long-term operation and significant potential as an efficient absorbent in large-scale dispose of oily water.展开更多
Industrial production and domestic discharge produce a large amount of oily wastewater, which seriously affects the stability of the ecological environment. Membrane separation technology provides another path to trea...Industrial production and domestic discharge produce a large amount of oily wastewater, which seriously affects the stability of the ecological environment. Membrane separation technology provides another path to treating oily wastewater. And appropriate surface modification of the membrane helps to achieve high efficiency of treating oily wastewater. With green, economy and stability been more concerned.The focal research reports a completely biodegradable all cellulose composite filter paper(ACCFP) composed of Ⅰ-cellulose macrofibers and Ⅱ-cellulose matrix. It is a simple one-step impregnation method to adjust the surface microstructure of the pristine filter paper(PFP), and it does not involve with chemical reaction. The pre-wetted ACCFP consist of Ⅱ-cellulose hydrogel and Ⅰ-cellulose reinforcement in the process of oil-water separation. This layer of hydrogel is the fundamental to underwater superoleophobicity, which determines their eligibility for applications of efficient oil-water mixture or oil-in-water(oil/water) emulsion separation. The separation efficiency of oil-water mixture and oil/water emulsion exceed 95% and 99.9%, respectively. In addition, excellent mechanical properties of ACCFP in dry and wet conditions ensure its stability in service and prolong service life in applications. The focal study provides a new method for high-performance oil-water separation and it is more in line with sustainable chemistry.展开更多
Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., ...Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., a porous ceramic membrane substrate, a polyvinylidene fluoride (PVDF) ultrafiltration sub-layer, and a polyamide/polyvinyl alcohol (PVA) composite thin top-layer. The PVDF polymer was east onto the tubular porous ceramic membranes with an immersion precipitation method, and the polyamide/PVA composite thin top-layer was fabricated with an inteffaeial polymerization method. The effects of the sub-layer composition and the recipe in the inteffaeial polymerization for fabricating the top-layer on the structure and performance of composite membranes were systematically investigated. The prepared composite membranes showed a good performance for treating the O/W microemulsions with a mean diameter of about 2.41μm. At the operating pressure of 0.4MPa, the hydraulic permeability remained steadily about 190L·m^-2·h^-1, the oil concentration in the permeate was less than 1.6mg·L^-1, and the oil rejection coefficient was always higher than 98.5% throughout the operation from the beginning.展开更多
Nowadays, oil spills have led to a serious environmental crisis of the world. To deal with this problem, inspired from super-hydrophobic lotus leaf, this study fabricated super-hydrophobic and super-lipophilic functio...Nowadays, oil spills have led to a serious environmental crisis of the world. To deal with this problem, inspired from super-hydrophobic lotus leaf, this study fabricated super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane (FGP) sponge by a simple and inexpensive dip coating method. The resulting FGP sponge was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy and water contact angle. The results expressed that FGP sponge exhibited a similar surface structure to that of a lotus leaf, and possessed the super-hydrophobic characteristic with the water contact angle (WAC) of 152°± 1 °. The absorption capacity and reusability were also investigated. It can be seen that, the FGP sponge can remove a wide range of oils and organic solvents from water with good absorption capacities (up to 35 times of its own mass). Significantly, after 10 cycles the absorption capacity of the oils and organic solvents was higher than 90°; for the reused FGP sponge, demonstrating the good reusability of the FGP sponge. Therefore, this study probably provided a simole way to remove the pollutions ofoil spills and toxic organism from water.展开更多
The work described here was focused on exploring the potential application of coal to purification of oily waste water.Coal was added to oily waste water as an adsorbent and then removed through a flotation process.Th...The work described here was focused on exploring the potential application of coal to purification of oily waste water.Coal was added to oily waste water as an adsorbent and then removed through a flotation process.This allowed economical and highly efficient separation of oil from the waste water.The absorption time,coal type,coal particle size distribution,pH value and oil concentration were investigated.The results indicate that oil absorption by a coal increases for a period of 1.5 h and then gradually tends toward an equilibrium value.It appears that the absorption capacity of anthracite is more than that of lean coal or lignite,given the same coal particle size distribution.The absorption capacity of a coarse coal fraction is less than that of finer coal,given the same of coal type.The absorption capacity of anthracite decreases slightly as the pH increases from 4 to 9.The adsorption of oil on anthracite follows the Freundlich isothermal adsorption law:given initial oil concentrations of 160.5 or 1023.6 mg/L the absorption capacity was 23.8 or 840.0 mg/g.The absorption mechanism consists of two kinds of absorption,a physical process assisted by a chemical one.展开更多
A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space b...A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space between the two plates is rather narrow to improve the collisions between oil droplets and the plate surface.Oil droplets have an affinity for the plate surface and thus are captured,and then coalesce onto the surface.The droplet size distribution of the residual emulsion resulted from the separation process is remarkably changed.The oil layer on the plate weakens the further separation of oil droplets from the emulsion.Three types of plate materials,polypropylene(PP),polytetrafluoroethylene(PTFE) and nylon 66,were used.It is found that PP is the best in terms of the oil separation efficiency and nylon 66 is the poorest.The interaction between droplets in the emulsion and plate surface is indicated by the spreading coefficient of oil droplet on the plate in aqueous environment,and the influences of formed oil layer and plate material on the separation efficiency are discussed.展开更多
It is of great necessity yet still a challenge to develop superwetting functional interfacial materials for simultaneously separating insoluble oil and degrading soluble dye pollutants in practical wastewater.In this ...It is of great necessity yet still a challenge to develop superwetting functional interfacial materials for simultaneously separating insoluble oil and degrading soluble dye pollutants in practical wastewater.In this work,a Ag-CuO heterostructure-decorated mesh was fabricated via facile alkali etchingcalcination and photoreduction approaches.The as-synthesized mesh with superhydrophilicity and underwater superoleophobicity displayed high separation efficiency(>99.998%)for diverse oil/water mixtures.Besides,it demonstrated more superior photocatalytic performance in dye degradation than those of bare CuO nanostructure-coated materials,which is primarily attributed to the intensive visible light harvesting and efficient electron-holes separation occurred on noble metal-semiconductor heterostructures.Furthermore,on account of the tenacity of Cu substrate as well as enhanced structural stability,this binary composite-decorated mesh exhibited highly reliable durability and robustness after 10 cycles of photocatalytic degradation tests,and even being ultrasonic worn for 30 min.More importantly,our developed mesh was capable of in situ catalytic degrading water-soluble organic dyes during oil/water separation under visible light irradiation.Therefore,such a dexterous and feasible strategy may afford a new route to construct bifunctional and predurable materials for actual sewage purification.展开更多
A high performance preoxidized poly(acrylonitrile)(O-PAN)nanofiber membrane with excellent solvent resistance,thermal stability and flexibility was fabricated by the preoxidation of electrospun PAN nanofiber membrane....A high performance preoxidized poly(acrylonitrile)(O-PAN)nanofiber membrane with excellent solvent resistance,thermal stability and flexibility was fabricated by the preoxidation of electrospun PAN nanofiber membrane.The performance of resultant O-PAN nanofiber membrane was optimized by altering the PAN concentration and preoxidation temperature.The results showed that the O-PAN nanofiber membrane which made from PAN concentration of 14%(mass)and preoxidation temperature of 250.0℃ have a more optimal comprehensive performance.In the long-term separation test of SiO2 particle(1 μm)in DMAc suspension,the permeate flux of O-PAN nanofiber membrane stabilized at 227.91 L·m^(-2)·h^(-1)(25℃,0.05 MPa)while the SiO2 rejection above 99.6%,which showed excellent solvent resistance and separation performance.In order to further explore the application of the O-PAN nanofiber membrane,the OPAN nanofiber membrane was treated with fluoride and used in oil/water separation process.The O-PAN nanofiber membrane after hydrophobic treatment showed excellent hydrophobicity and good oil/water separation performance with the permeate flux about 969.59 L·m^(-2)·h^(-1)while the separation efficiency above 96.1%.The O-PAN nanofiber membrane exhibited a potential application prospect in harsh environment separation.展开更多
Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Am...Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Among the various presented technologies applied for oil/water separation, oil absorption process has been explored widely and offers satisfactory results especially with surface modified oil-absorbing material and/or hybrid absorbents. In this review, we summarize the recent research activities involved in the designing strategies of oil-absorbing absorbents and their application in oil absorption. Then, an extensive list of various oil-absorbing materials from literature, including polymer materials, porous inorganic materials and biomass materials, has been compiled and the oil adsorption capacities toward various types of oils and organic solvents as available in the literature are presented along with highlighting and discussing the various factors involved in the designing of oil-absorbing absorbents tested so far for oil/water separation. Finally, some future trends and perspectives in oil-absorbing material are outlined.展开更多
In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prom...In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0° Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h^-1·m-2, which could be used to separate various organic solvents/ water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation.展开更多
To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase...To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase separation of SMG dispersion migrating in pores was simulated by using the microfluidic technology. Theoretically guided by the tree fork concentration distribution of red cells in biological fluid mechanics, the concentration distribution mathematical model of SMG in different pores is established. Furthermore, the micro and macro physical simulation experiments of continuous and dispersed phase flooding agents were carried out. The results show that the continuous flooding agent enters all the swept zones and increases the flow resistance in both larger and small pores. On the contrary, the particle phase separation phenomenon occurs during the injection process of dispersed flooding agent. The SMG particles gather in the larger pore to form bridge blinding, and the carrier fluid displace oil in the small pore. Working in cooperation, the SMG particle and carrier fluid drive the residual oil in the low permeability layers step by step and achieve the goal of enhanced oil recovery. The laboratory experimental results indicate that, the oil increment and water reduction effect of dispersed flooding agent is much better than that of continuous flooding agent, which is consistent with the field test results.展开更多
This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adap...This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adaptability of oilfields in China,the development of separate zone oil production technology is divided into four stages:flowing well zonal oil production,mechanical recovery and water blocking,hydraulically adjustable zonal oil production,and intelligent zonal production.The principles,construction processes,adaptability,advantages and disadvantages of the technology are introduced in detail.Based on the actual production situation of the oilfields in China at present,three development directions of the technology are proposed.First,the real-time monitoring and adjustment level of separated zone oil production needs to be improved by developing downhole sensor technology and two-way communication technology between ground and downhole and enhancing full life cycle service capability and adaptability to horizontal wells.Second,an integrated platform of zonal oil production and management should be built using a digital artificial lifting system.Third,integration of injection and production should be implemented through large-scale application of zonal oil production and zonal water injection to improve matching and adjustment level between the injection and production parameters,thus making the development adjustment from"lag control"to"real-time optimization"and improving the development effect.展开更多
Large volumes of water are generated in gas- and oil-production. This includes the water that is present originally in the reservoirs, but also water that is injected into the wells. While currently much of the produc...Large volumes of water are generated in gas- and oil-production. This includes the water that is present originally in the reservoirs, but also water that is injected into the wells. While currently much of the produced water is either reinjected or disposed of after treatment, treated produced water is increasingly seen as an interesting resource, especially in water-scarce regions. This review looks at different PW treatment methods available, with an emphasis on the management of PW in oil- and gas production on the Arabian Peninsula.展开更多
基金Financial support from the Science Fund for Creative Research Groups of the National Science Foundation of China (22021005)the National Natural Science Foundation of China (21776032)the Innovation Team of Dalian University of Technology (DUT2017TB01)。
文摘Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of gravity.W-MEL membranes were grown on stainless steel (SS) meshes through in-situ hydrothermal growth method facilitated with (3-aminopropyl)triethoxysilane (APTES) modification of stainless steel meshes,which promote the heterogeneous nucleation and crystal growth of W-MEL zeolites onto the mesh surface.W-MEL membranes were grown on different mesh size supports to investigate the effect of mesh size on the separation performance of the membrane.The assynthesized W-MEL membrane supported on 500 mesh (25μm)(W-MEL-500) exhibit the hydrophilic nature with a water contact angle of 11.8°and delivers the best hexane/water mixture separation with a water flux and separation efficiency of 46247 L·m^(-2)·h^(-1)and 99.5%,respectively.The wettability of W-MEL membranes was manipulated from hydrophilic to hydrophobic nature by chemically modifying with the fluorine-free compounds (hexadecyltrimethoxysilane (HDTMS) and dodecyltrimethoxysilane(DDTMS)) to achieve efficient oil-permselective separation of heavy oils from water.Among the hydrophobically modified W-MEL membranes,W-MEL-500-HDTMS having a water contact angle of146.4°delivers the best separation performance for dichloromethane/water mixtures with a constant oil flux and separation efficiency of 61490 L·m^(-2)·h^(-1)and 99.2%,respectively along with the stability tested up to 20 cycles.Both W-MEL-500-HDTMS and W-MEL-500-DDTMS membranes also exhibit similar separation performances for the separation of heavy oil from sea water along with a 20-fold lower corrosion rate in comparison with the bare stainless-steel mesh,indicating their excellent stability in seawater.Compared to the reported zeolite membranes for oil/water separation,the as-synthesized and hydrophobically modified W-MEL membranes shows competitive separation performances in terms of flux and separation efficiency,demonstrating the good potentiality for oil/water separation.
文摘This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil–water separation.The obtained ME-g-PLMA sponge had an excellent pore structure with superhydrophobic(water contact angle of 154°)and superoleophilic properties.It can absorb various types of oils up to 66–168 times its mass.The ME-g-PLMA sponge can continuously separate oil slicks in water by connecting a pump or separating oil underwater with a gravity-driven device.In addition,it maintained its highly hydrophobic properties even after long-term immersion in different corrosive solutions and repeated oil adsorption.The modified ME-g-PLMA sponge exhibited excellent separation properties and potential for oil spill cleanup.
基金We gratefully acknowledge the financial support from National Key Research and Development Project,China(2019YFA0708700)the National Natural Science Foundation of China(52222403,52074333)the Innovation Fund Project for graduate students of China University of Petroleum(East China)(22CX04049A).
文摘The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative analysis of interactions in oil-water separation is rarely recognized.Herein,we constructed an adaptable wettability membrane with multiple polymer networks by polydopamine(PDA)and mussel-inspired amphiphilic polymer.Based on the Owens three-probe liquid method,the surface energy of the modified membrane was verified to meet the adaptive wettability conditions,with surface energies(γ-8)of 147.6 mJ m^(−2)(superhydrophilic/underwater superoleophobic)and 49.87 mJ m^(−2)(superhydrophobic/superoleophobic),respectively.The adhesion or repulsion of the membrane to the oil phase under different conditions during the separation process was quantified by the chemical probe AFM technique.In addition,the oil-water selective separation mechanism was further analyzed in a simplified membrane microchannel model.The results show that the different wetting produces capillary additional pressure in opposite directions,resulting in different energies to be overcome when the oil or water passes through the microchannels,thus achieving selective separation.
基金supported by the National Key Research and Development Program of China under the contract number of 2017YFB0308000Program of Innovation Academy for Green Manufacture,CAS(IAGM2020C04)+1 种基金the State Key Laboratory of Heavy Oil Processing(SKLOP201903001)Key Research and Development Program of Hebei Province,China(20374001D)。
文摘Discharging untreated oily wastewater into the environment disrupts the ecological balance,which is a global problem that requires urgent solutions.Superhydrophilic and superoleophilic fibrous medium(FM)effectively separated oil–water emulsion as it was hydrophobic underwater.But its separation efficiencies(SEs)first increased to 98.9%,then dropped to 97.6%in 10 min because of oil-fouling.To tackle this problem,FM deposited with 0%–10%silica nanoparticle(NPsFMs),then coated by fluorocarbon polymer(X-[CH_(2)CH_(2)O]nCH_(2)CH_(2)O-Y-NH-COOCH_(2)C4F9)(FCNPs FMs),was used to enhance its roughness and regulate its initial wettability to improve the anti-fouling property.FCFM and FCNPs FMs were hydrophobic and oleophobic in air and oleophobic underwater.Their water contact angles,oil contact angles and oil contact angles were 115.3°–121.1°,128.8°–136.5°,and 131.6°–136.7°,respectively,meeting the requirement of 90°–140°for coalescence separation.FCNPs FM-5 had the best separation performance with a constant value of 99.8%in 10 min,while that of FCNPs FM-10 slightly decreased to 99.5%.Theoretical released droplet(TRD)diameter,calculated by the square root of the product of pore radius and fiber diameter,was used for the evaluation of coalescence performance.Analyzed by two ideal models,TRD diameter and fiber diameter showed a parabola type relationship,proving that the separation efficiency was a collaborative work of wettability,pore size and fiber diameter.Also,it explained the SEs reduction from FCNPs FM-5 to FCNPs FM-10 was revelent to the three parameters.Moreover,FCNPsFMs effectively separated emulsions stabilized by cationic surfactant CTAB(SEs:97.3%–98.4%)and anionic surfactant SDBS(SEs:91.3%–93.4%).But they had an adverse effect on nonionic surfactant Tween-80 emulsion separation(SEs:94.0%–71.76%).Emulsions made by diverse oils can be effectively separated:octane(SEs:99.4%–100%),rapeseed oil(SEs:97.3%–98.8%),and diesel(SEs:95.2%–97.0%).These findings provide new insights for designing novel materials for oil–water separation by coalescence mechanism.
基金the financial support from National Key Research & Development Program of China (2017B0602702)。
文摘In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modification with n-dodecyl mercaptan(DDT). This method provides a new strategy to fabricate superhydrophobic PU sponge with a water contact angle of 157° for absorbing oil with low cost and in large scale. It exhibits the strong absorption capacity and highly selective characteristic for various kinds of oils which can be recycled by simple squeezing. Besides, the as-prepared sponge can deal with the floating and underwater oils, indicating its application value in handling oil spills and domestic oily wastewater. The good self-cleaning ability shows the potential to clear the pollutants due to the ultralow adhesion to water. Especially, the most important point is that the superhydrophobic sponge can continuously and effectively separate the oil/water mixture against the condition of turbulent disturbance by using our designed device system, which exhibit its good superhydrophobicity, strong stability.Furthermore, the SS-PU still maintained stable absorption performance after 150 cycle tests without losing capacity obviously, showing excellent durability in long-term operation and significant potential as an efficient absorbent in large-scale dispose of oily water.
基金the financial support from the National Key R&D Program of China (no. 2018YFB1501602)Science Foundation of Shanxi Province, China (Grant no. 201901D111006ZD)+1 种基金Fund for Shanxi “1331 project”Shanxi Province Platform Base and Talent Special Fund (no. 201705D211023)。
文摘Industrial production and domestic discharge produce a large amount of oily wastewater, which seriously affects the stability of the ecological environment. Membrane separation technology provides another path to treating oily wastewater. And appropriate surface modification of the membrane helps to achieve high efficiency of treating oily wastewater. With green, economy and stability been more concerned.The focal research reports a completely biodegradable all cellulose composite filter paper(ACCFP) composed of Ⅰ-cellulose macrofibers and Ⅱ-cellulose matrix. It is a simple one-step impregnation method to adjust the surface microstructure of the pristine filter paper(PFP), and it does not involve with chemical reaction. The pre-wetted ACCFP consist of Ⅱ-cellulose hydrogel and Ⅰ-cellulose reinforcement in the process of oil-water separation. This layer of hydrogel is the fundamental to underwater superoleophobicity, which determines their eligibility for applications of efficient oil-water mixture or oil-in-water(oil/water) emulsion separation. The separation efficiency of oil-water mixture and oil/water emulsion exceed 95% and 99.9%, respectively. In addition, excellent mechanical properties of ACCFP in dry and wet conditions ensure its stability in service and prolong service life in applications. The focal study provides a new method for high-performance oil-water separation and it is more in line with sustainable chemistry.
基金Supported by the Trans-century Training Programme Foundation for the Talents by the Ministry of Education of China (No.2002-48).
文摘Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., a porous ceramic membrane substrate, a polyvinylidene fluoride (PVDF) ultrafiltration sub-layer, and a polyamide/polyvinyl alcohol (PVA) composite thin top-layer. The PVDF polymer was east onto the tubular porous ceramic membranes with an immersion precipitation method, and the polyamide/PVA composite thin top-layer was fabricated with an inteffaeial polymerization method. The effects of the sub-layer composition and the recipe in the inteffaeial polymerization for fabricating the top-layer on the structure and performance of composite membranes were systematically investigated. The prepared composite membranes showed a good performance for treating the O/W microemulsions with a mean diameter of about 2.41μm. At the operating pressure of 0.4MPa, the hydraulic permeability remained steadily about 190L·m^-2·h^-1, the oil concentration in the permeate was less than 1.6mg·L^-1, and the oil rejection coefficient was always higher than 98.5% throughout the operation from the beginning.
基金Supported by the National Natural Science Foundation of China(21776319)
文摘Nowadays, oil spills have led to a serious environmental crisis of the world. To deal with this problem, inspired from super-hydrophobic lotus leaf, this study fabricated super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane (FGP) sponge by a simple and inexpensive dip coating method. The resulting FGP sponge was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy and water contact angle. The results expressed that FGP sponge exhibited a similar surface structure to that of a lotus leaf, and possessed the super-hydrophobic characteristic with the water contact angle (WAC) of 152°± 1 °. The absorption capacity and reusability were also investigated. It can be seen that, the FGP sponge can remove a wide range of oils and organic solvents from water with good absorption capacities (up to 35 times of its own mass). Significantly, after 10 cycles the absorption capacity of the oils and organic solvents was higher than 90°; for the reused FGP sponge, demonstrating the good reusability of the FGP sponge. Therefore, this study probably provided a simole way to remove the pollutions ofoil spills and toxic organism from water.
基金the Science and Technology Fund of China University of Mining & Technology (No.2006A019)the National Natural Science Foundation of China (No.50974119) for their support of this project
文摘The work described here was focused on exploring the potential application of coal to purification of oily waste water.Coal was added to oily waste water as an adsorbent and then removed through a flotation process.This allowed economical and highly efficient separation of oil from the waste water.The absorption time,coal type,coal particle size distribution,pH value and oil concentration were investigated.The results indicate that oil absorption by a coal increases for a period of 1.5 h and then gradually tends toward an equilibrium value.It appears that the absorption capacity of anthracite is more than that of lean coal or lignite,given the same coal particle size distribution.The absorption capacity of a coarse coal fraction is less than that of finer coal,given the same of coal type.The absorption capacity of anthracite decreases slightly as the pH increases from 4 to 9.The adsorption of oil on anthracite follows the Freundlich isothermal adsorption law:given initial oil concentrations of 160.5 or 1023.6 mg/L the absorption capacity was 23.8 or 840.0 mg/g.The absorption mechanism consists of two kinds of absorption,a physical process assisted by a chemical one.
基金Supported by the Eleventh Five-Year Plan of national support (2007BAI26B03-04)
文摘A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space between the two plates is rather narrow to improve the collisions between oil droplets and the plate surface.Oil droplets have an affinity for the plate surface and thus are captured,and then coalesce onto the surface.The droplet size distribution of the residual emulsion resulted from the separation process is remarkably changed.The oil layer on the plate weakens the further separation of oil droplets from the emulsion.Three types of plate materials,polypropylene(PP),polytetrafluoroethylene(PTFE) and nylon 66,were used.It is found that PP is the best in terms of the oil separation efficiency and nylon 66 is the poorest.The interaction between droplets in the emulsion and plate surface is indicated by the spreading coefficient of oil droplet on the plate in aqueous environment,and the influences of formed oil layer and plate material on the separation efficiency are discussed.
基金supported by the National Natural Science Foundation of China(21303232)the China Postdoctoral Science Foundation(2018M632610)
文摘It is of great necessity yet still a challenge to develop superwetting functional interfacial materials for simultaneously separating insoluble oil and degrading soluble dye pollutants in practical wastewater.In this work,a Ag-CuO heterostructure-decorated mesh was fabricated via facile alkali etchingcalcination and photoreduction approaches.The as-synthesized mesh with superhydrophilicity and underwater superoleophobicity displayed high separation efficiency(>99.998%)for diverse oil/water mixtures.Besides,it demonstrated more superior photocatalytic performance in dye degradation than those of bare CuO nanostructure-coated materials,which is primarily attributed to the intensive visible light harvesting and efficient electron-holes separation occurred on noble metal-semiconductor heterostructures.Furthermore,on account of the tenacity of Cu substrate as well as enhanced structural stability,this binary composite-decorated mesh exhibited highly reliable durability and robustness after 10 cycles of photocatalytic degradation tests,and even being ultrasonic worn for 30 min.More importantly,our developed mesh was capable of in situ catalytic degrading water-soluble organic dyes during oil/water separation under visible light irradiation.Therefore,such a dexterous and feasible strategy may afford a new route to construct bifunctional and predurable materials for actual sewage purification.
基金supported by the Science and Technology Plans of Tianjin(18PTSYJC00170)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(YESS20160168)The Analytical&Testing Center of Tiangong University was appreciated.
文摘A high performance preoxidized poly(acrylonitrile)(O-PAN)nanofiber membrane with excellent solvent resistance,thermal stability and flexibility was fabricated by the preoxidation of electrospun PAN nanofiber membrane.The performance of resultant O-PAN nanofiber membrane was optimized by altering the PAN concentration and preoxidation temperature.The results showed that the O-PAN nanofiber membrane which made from PAN concentration of 14%(mass)and preoxidation temperature of 250.0℃ have a more optimal comprehensive performance.In the long-term separation test of SiO2 particle(1 μm)in DMAc suspension,the permeate flux of O-PAN nanofiber membrane stabilized at 227.91 L·m^(-2)·h^(-1)(25℃,0.05 MPa)while the SiO2 rejection above 99.6%,which showed excellent solvent resistance and separation performance.In order to further explore the application of the O-PAN nanofiber membrane,the OPAN nanofiber membrane was treated with fluoride and used in oil/water separation process.The O-PAN nanofiber membrane after hydrophobic treatment showed excellent hydrophobicity and good oil/water separation performance with the permeate flux about 969.59 L·m^(-2)·h^(-1)while the separation efficiency above 96.1%.The O-PAN nanofiber membrane exhibited a potential application prospect in harsh environment separation.
基金Supported by the National Natural Science Foundation of China(21706100 and U1507115)Natural Science Foundation of Jiangsu Province(BK20160500,BK20161362and BK20160491)+4 种基金the China Postdoctoral Science Foundation(2016M600373,2018T110452 and 2017M621649)China Postdoctoral Science Foundation of Jiangsu Province(1601016A,1701067C and 1701073C)Scientific Research Foundation for Advanced Talents,Jiangsu University(15JDG142)High-Level Personnel Training Project of Jiangsu Province(BRA2016142)Key Research and Development Program of Jiangxi Province(20171BBH80008)
文摘Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Among the various presented technologies applied for oil/water separation, oil absorption process has been explored widely and offers satisfactory results especially with surface modified oil-absorbing material and/or hybrid absorbents. In this review, we summarize the recent research activities involved in the designing strategies of oil-absorbing absorbents and their application in oil absorption. Then, an extensive list of various oil-absorbing materials from literature, including polymer materials, porous inorganic materials and biomass materials, has been compiled and the oil adsorption capacities toward various types of oils and organic solvents as available in the literature are presented along with highlighting and discussing the various factors involved in the designing of oil-absorbing absorbents tested so far for oil/water separation. Finally, some future trends and perspectives in oil-absorbing material are outlined.
基金the National Natural Science Foundation of China(No.21776319 and No.21476269).
文摘In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0° Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h^-1·m-2, which could be used to separate various organic solvents/ water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation.
基金Supported by the China Postdoctoral Science Foundation(Grant No.2018M641610)China National Science and Technology Major Project(2016ZX05025-003)
文摘To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase separation of SMG dispersion migrating in pores was simulated by using the microfluidic technology. Theoretically guided by the tree fork concentration distribution of red cells in biological fluid mechanics, the concentration distribution mathematical model of SMG in different pores is established. Furthermore, the micro and macro physical simulation experiments of continuous and dispersed phase flooding agents were carried out. The results show that the continuous flooding agent enters all the swept zones and increases the flow resistance in both larger and small pores. On the contrary, the particle phase separation phenomenon occurs during the injection process of dispersed flooding agent. The SMG particles gather in the larger pore to form bridge blinding, and the carrier fluid displace oil in the small pore. Working in cooperation, the SMG particle and carrier fluid drive the residual oil in the low permeability layers step by step and achieve the goal of enhanced oil recovery. The laboratory experimental results indicate that, the oil increment and water reduction effect of dispersed flooding agent is much better than that of continuous flooding agent, which is consistent with the field test results.
基金Supported by the National Key Research and Development Program of China(2018YFE0196000)National Science and Technology Major Project of China(2016ZX05010-006)CNPC Scientific Research and Technical Development Project(2019B-4113)
文摘This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adaptability of oilfields in China,the development of separate zone oil production technology is divided into four stages:flowing well zonal oil production,mechanical recovery and water blocking,hydraulically adjustable zonal oil production,and intelligent zonal production.The principles,construction processes,adaptability,advantages and disadvantages of the technology are introduced in detail.Based on the actual production situation of the oilfields in China at present,three development directions of the technology are proposed.First,the real-time monitoring and adjustment level of separated zone oil production needs to be improved by developing downhole sensor technology and two-way communication technology between ground and downhole and enhancing full life cycle service capability and adaptability to horizontal wells.Second,an integrated platform of zonal oil production and management should be built using a digital artificial lifting system.Third,integration of injection and production should be implemented through large-scale application of zonal oil production and zonal water injection to improve matching and adjustment level between the injection and production parameters,thus making the development adjustment from"lag control"to"real-time optimization"and improving the development effect.
文摘Large volumes of water are generated in gas- and oil-production. This includes the water that is present originally in the reservoirs, but also water that is injected into the wells. While currently much of the produced water is either reinjected or disposed of after treatment, treated produced water is increasingly seen as an interesting resource, especially in water-scarce regions. This review looks at different PW treatment methods available, with an emphasis on the management of PW in oil- and gas production on the Arabian Peninsula.