To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase...To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase separation of SMG dispersion migrating in pores was simulated by using the microfluidic technology. Theoretically guided by the tree fork concentration distribution of red cells in biological fluid mechanics, the concentration distribution mathematical model of SMG in different pores is established. Furthermore, the micro and macro physical simulation experiments of continuous and dispersed phase flooding agents were carried out. The results show that the continuous flooding agent enters all the swept zones and increases the flow resistance in both larger and small pores. On the contrary, the particle phase separation phenomenon occurs during the injection process of dispersed flooding agent. The SMG particles gather in the larger pore to form bridge blinding, and the carrier fluid displace oil in the small pore. Working in cooperation, the SMG particle and carrier fluid drive the residual oil in the low permeability layers step by step and achieve the goal of enhanced oil recovery. The laboratory experimental results indicate that, the oil increment and water reduction effect of dispersed flooding agent is much better than that of continuous flooding agent, which is consistent with the field test results.展开更多
Solid-liquid hydrocyclones are mainly used to separate large particles, such as the particles of drilling fluid in petroleum industry, and large mineral particles. Till now the hydrocyclonic separation for fine partic...Solid-liquid hydrocyclones are mainly used to separate large particles, such as the particles of drilling fluid in petroleum industry, and large mineral particles. Till now the hydrocyclonic separation for fine particles is still a big problem. Basic separation principle of hydrocyclones and experimental research facility are simply introduced. The difficulty of separating fine particle is analyzed. Based on a solid-liquid hydrocyclone used for separating fine particles, relationships of dimensionless pressure characteristic parameters, i.e. Euler number and pressure drop ratio, with several main dimensionless parameters, such as split ratio, swirl number and gas-liquid ratio, were experimentally studied in detail. The research was carried out by using the hydrocyclonic separation experimental rig at the University of Bradford. It is shown that the less the size of particle, the less the value of radius of the balance orbit occupied by the particle, and then the more difficult for the particle to be separated. Experiments indicate that Euler number of the tested hydrocyclone increases with the rise of Reynolds number, split ratio, swirl number and gas-liquid ratio respectively, and the pressure drop ratio falls with the increase of Reynolds number, split ratio and swirl number respectively. It is concluded that the most effective way to decrease the unit energy dissipation of hydrocyclone is to reduce swirl number or gas-liquid ratio of the mixed media.展开更多
基金Supported by the China Postdoctoral Science Foundation(Grant No.2018M641610)China National Science and Technology Major Project(2016ZX05025-003)
文摘To compare the oil displacement mechanisms and performances of continuous phase flooding agent(traditional polymer solution) and dispersed phase flooding agent(particle-type polymer SMG dispersion), the particle phase separation of SMG dispersion migrating in pores was simulated by using the microfluidic technology. Theoretically guided by the tree fork concentration distribution of red cells in biological fluid mechanics, the concentration distribution mathematical model of SMG in different pores is established. Furthermore, the micro and macro physical simulation experiments of continuous and dispersed phase flooding agents were carried out. The results show that the continuous flooding agent enters all the swept zones and increases the flow resistance in both larger and small pores. On the contrary, the particle phase separation phenomenon occurs during the injection process of dispersed flooding agent. The SMG particles gather in the larger pore to form bridge blinding, and the carrier fluid displace oil in the small pore. Working in cooperation, the SMG particle and carrier fluid drive the residual oil in the low permeability layers step by step and achieve the goal of enhanced oil recovery. The laboratory experimental results indicate that, the oil increment and water reduction effect of dispersed flooding agent is much better than that of continuous flooding agent, which is consistent with the field test results.
文摘Solid-liquid hydrocyclones are mainly used to separate large particles, such as the particles of drilling fluid in petroleum industry, and large mineral particles. Till now the hydrocyclonic separation for fine particles is still a big problem. Basic separation principle of hydrocyclones and experimental research facility are simply introduced. The difficulty of separating fine particle is analyzed. Based on a solid-liquid hydrocyclone used for separating fine particles, relationships of dimensionless pressure characteristic parameters, i.e. Euler number and pressure drop ratio, with several main dimensionless parameters, such as split ratio, swirl number and gas-liquid ratio, were experimentally studied in detail. The research was carried out by using the hydrocyclonic separation experimental rig at the University of Bradford. It is shown that the less the size of particle, the less the value of radius of the balance orbit occupied by the particle, and then the more difficult for the particle to be separated. Experiments indicate that Euler number of the tested hydrocyclone increases with the rise of Reynolds number, split ratio, swirl number and gas-liquid ratio respectively, and the pressure drop ratio falls with the increase of Reynolds number, split ratio and swirl number respectively. It is concluded that the most effective way to decrease the unit energy dissipation of hydrocyclone is to reduce swirl number or gas-liquid ratio of the mixed media.