Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperature...Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperatures.With increasing temperature from 25 to 85℃,the flux QOEA of O_2-enriched air(OEA),O_2 permselectivity and the O_2 concentration Yo_2 in the OEA all increase.The membranes show a unique trend in their Yo_2~QOEA relationship,that is,the air separation capability increases simultaneously with the OEA permeation capability.The magnitudes of QOEA and Yo_2 for 17μm-thick membrane after the testg time of 36hours at 70℃ are 5×10^(-4)cm^3 (STP)/s·cm^2 and 37.6%,respectively.The air separation capability depends slightly on membrane forming solvents.展开更多
Transcranial focused ultrasound is a booming noninvasive therapy for brain stimuli. The Kelvin–Voigt equations are employed to calculate the sound field created by focusing a 256-element planar phased array through a...Transcranial focused ultrasound is a booming noninvasive therapy for brain stimuli. The Kelvin–Voigt equations are employed to calculate the sound field created by focusing a 256-element planar phased array through a monkey skull with the time-reversal method. Mode conversions between compressional and shear waves exist in the skull. Therefore, the wave field separation method is introduced to calculate the contributions of the two waves to the acoustic intensity and the heat source, respectively. The Pennes equation is used to depict the temperature field induced by ultrasound. Five computational models with the same incident angle of 0?and different distances from the focus for the skull and three computational models at different incident angles and the same distance from the focus for the skull are studied. Numerical results indicate that for all computational models, the acoustic intensity at the focus with mode conversions is 12.05%less than that without mode conversions on average. For the temperature rise, this percentage is 12.02%. Besides, an underestimation of both the acoustic intensity and the temperature rise in the skull tends to occur if mode conversions are ignored. However, if the incident angle exceeds 30?, the rules of the over-and under-estimation may be reversed. Moreover,shear waves contribute 20.54% of the acoustic intensity and 20.74% of the temperature rise in the skull on average for all computational models. The percentage of the temperature rise in the skull from shear waves declines with the increase of the duration of the ultrasound.展开更多
This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, t...This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, the numerical calculation was carried out using an algebraic Reynolds stress model (ASM) and the standard k-ε model. The modelling of turbulence of com-pressible, complex flows used in the simulation is discussed. Emphasis is given to the derivation of the ASM for 2D axisymmet-rical flows, particularly to the model constants in the algebraic Reynolds stress equations. The TEFESS code, based on a staggered Finite Volume approach with the standard k-ε model and first-order numerical schemes, was used to carry out all the computations. The predicted results for strongly swirling turbulent compressible flow in a vortex tube suggested that the use of the ASM leads to better agreement between the numerical results and experimental data, while the k-ε model cannot capture the stabilizing effect of the swirl.展开更多
Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development...Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.展开更多
The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone w...The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone was -45 ℃ (the compressed air was pumped into the chamber at room temperature). The objective of this paper is to proof that this temperature separation effect cannot be explained by conventional heat transfer processes. To explain this phenomenon, the concept of PGEW (Pressure Gradient Elastic Waves) is proposed. PGEW are kind of elastic waves, which operate in compressible fluids with pressure gradients and density fluctuations. The result of PGEW propagation is a heat transfer from area of low pressure to high pressure zone. The physical model of a gas in a strong field of mass forces is proposed to substantiate the PGEW existence. This physical model is intended for the construction of a theory of PGEW. Understanding the processes associated with the PGEW permits the possibility of creating new devices for energy saving and low potential heat utilization, which have unique properties.展开更多
In the previous researches, it is known that the swirl flow in circular pipe causes the temperature separation. Recently, it is shown that the temperature separation occurs in a vortex chamber when compressed air are ...In the previous researches, it is known that the swirl flow in circular pipe causes the temperature separation. Recently, it is shown that the temperature separation occurs in a vortex chamber when compressed air are pumped into this device from the periphery. Especially, in a cavity installed in the periphery of the chamber, the highest temperature was observed. Therefore, it is expected that this device can be used as a heat source in the engineering field. In recent researches, the mechanism of temperature separation in vortex chamber has been investigated by some researchers. However, there are few researches for the effect of diameter and volume of vortex chamber, height of central rod and position of cavity on the temperature separation. Further, no detailed physical explanation has been made for the temperature separation phenomena in the vortex chamber. In the present study, the effects of chamber configuration and position of the cavity on temperature separation in the vortex chamber were investigated experimentally.展开更多
This paper extends a new temperature and emissivity separation(TES)algorithm for retrieving land surface temperature and emissivity(LST and LSE)to the Advanced Geosynchronous Radiation Imager(AGRI)onboard Fengyun-4A,C...This paper extends a new temperature and emissivity separation(TES)algorithm for retrieving land surface temperature and emissivity(LST and LSE)to the Advanced Geosynchronous Radiation Imager(AGRI)onboard Fengyun-4A,China’s newest geostationary meteorological satellite.The extended TES algorithm was named the AGRI TES algorithm.The AGRI TES algorithm employs a modified water vapor scaling(WVS)method and a recalibrated empirical function over vegetated surfaces.In situ validation and cross-validation are utilized to investigate the accuracy of the retrieved LST and LSE.LST validation using the collected field measurements showed that the mean bias and RMSE of AGRI TES LST are 0.58 and 2.93 K in the daytime and−0.30 K and 2.18 K at nighttime,respectively;the AGRI official LST is systematically underestimated.Compared with the MODIS LST and LSE products(MYD21),the average bias and RMSE of AGRI TES LST are−0.26 K and 1.65 K,respectively.The AGRI TES LSE outperforms the AGRI official LSE in terms of accuracy and spatial integrity.This study demonstrates the good performance of the AGRI TES algorithm for the retrieval of high-quality LST and LSE,and the potential of the AGRI TES algorithm in producing operational LST and LSE products.展开更多
Exploring spatial and temporal land-use changes is valuable for local governments to address issues of sustainability and planning policy where urbanization and industrialization are taking place.Besides anthropogenic...Exploring spatial and temporal land-use changes is valuable for local governments to address issues of sustainability and planning policy where urbanization and industrialization are taking place.Besides anthropogenic effects,natural driving forces like climate change may also affect sustainability.However,such relationships have not been studied minutely.Hence,this study first investigates the land-use changes and their relationship with land surface temperature(LST)for the Shazand Watershed,Iran,in 1986,1998,2008,and 2016 coincided with supplementary industrialization stages.Furthermore,the relations among LST and other biophysical parameters,including Normalized Difference Vegetation Index(NDVI),Normalized Difference Buildup Index(NDBI),and Normalized Difference Water Index(NDWI),were analyzed,and corresponding variations were explored.The results indicated that the mean LST of the study watershed has an increasing trend from 1986 to 2008 due to land-use change and drought intensification.Later,LST decreased in 2016.Lower LST was associated with irrigation farming and orchard,and higher LST was related to sparse oak forest areas.There was also a negative correlation between LST and NDVI.As a result,it was inferred that greenery declined LST.Conversely,a positive correlation was found between LST and NDBI resulting from the built-up areas.Since LST could influence biological,physical,chemical processes,it can therefore be supported as an effective index for environmental sustainability assessment.展开更多
文摘Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperatures.With increasing temperature from 25 to 85℃,the flux QOEA of O_2-enriched air(OEA),O_2 permselectivity and the O_2 concentration Yo_2 in the OEA all increase.The membranes show a unique trend in their Yo_2~QOEA relationship,that is,the air separation capability increases simultaneously with the OEA permeation capability.The magnitudes of QOEA and Yo_2 for 17μm-thick membrane after the testg time of 36hours at 70℃ are 5×10^(-4)cm^3 (STP)/s·cm^2 and 37.6%,respectively.The air separation capability depends slightly on membrane forming solvents.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.81527901,11604361,and 91630309)
文摘Transcranial focused ultrasound is a booming noninvasive therapy for brain stimuli. The Kelvin–Voigt equations are employed to calculate the sound field created by focusing a 256-element planar phased array through a monkey skull with the time-reversal method. Mode conversions between compressional and shear waves exist in the skull. Therefore, the wave field separation method is introduced to calculate the contributions of the two waves to the acoustic intensity and the heat source, respectively. The Pennes equation is used to depict the temperature field induced by ultrasound. Five computational models with the same incident angle of 0?and different distances from the focus for the skull and three computational models at different incident angles and the same distance from the focus for the skull are studied. Numerical results indicate that for all computational models, the acoustic intensity at the focus with mode conversions is 12.05%less than that without mode conversions on average. For the temperature rise, this percentage is 12.02%. Besides, an underestimation of both the acoustic intensity and the temperature rise in the skull tends to occur if mode conversions are ignored. However, if the incident angle exceeds 30?, the rules of the over-and under-estimation may be reversed. Moreover,shear waves contribute 20.54% of the acoustic intensity and 20.74% of the temperature rise in the skull on average for all computational models. The percentage of the temperature rise in the skull from shear waves declines with the increase of the duration of the ultrasound.
文摘This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, the numerical calculation was carried out using an algebraic Reynolds stress model (ASM) and the standard k-ε model. The modelling of turbulence of com-pressible, complex flows used in the simulation is discussed. Emphasis is given to the derivation of the ASM for 2D axisymmet-rical flows, particularly to the model constants in the algebraic Reynolds stress equations. The TEFESS code, based on a staggered Finite Volume approach with the standard k-ε model and first-order numerical schemes, was used to carry out all the computations. The predicted results for strongly swirling turbulent compressible flow in a vortex tube suggested that the use of the ASM leads to better agreement between the numerical results and experimental data, while the k-ε model cannot capture the stabilizing effect of the swirl.
基金supported by National Natural Science Foundation of China(Grant No.11647150)Young Talents Program of Gansu Province of China(2016)Scientific Research Program of the Higher Education Institutions of Gansu Province of China(Grant No.2016A-068)
文摘Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.
文摘The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone was -45 ℃ (the compressed air was pumped into the chamber at room temperature). The objective of this paper is to proof that this temperature separation effect cannot be explained by conventional heat transfer processes. To explain this phenomenon, the concept of PGEW (Pressure Gradient Elastic Waves) is proposed. PGEW are kind of elastic waves, which operate in compressible fluids with pressure gradients and density fluctuations. The result of PGEW propagation is a heat transfer from area of low pressure to high pressure zone. The physical model of a gas in a strong field of mass forces is proposed to substantiate the PGEW existence. This physical model is intended for the construction of a theory of PGEW. Understanding the processes associated with the PGEW permits the possibility of creating new devices for energy saving and low potential heat utilization, which have unique properties.
文摘In the previous researches, it is known that the swirl flow in circular pipe causes the temperature separation. Recently, it is shown that the temperature separation occurs in a vortex chamber when compressed air are pumped into this device from the periphery. Especially, in a cavity installed in the periphery of the chamber, the highest temperature was observed. Therefore, it is expected that this device can be used as a heat source in the engineering field. In recent researches, the mechanism of temperature separation in vortex chamber has been investigated by some researchers. However, there are few researches for the effect of diameter and volume of vortex chamber, height of central rod and position of cavity on the temperature separation. Further, no detailed physical explanation has been made for the temperature separation phenomena in the vortex chamber. In the present study, the effects of chamber configuration and position of the cavity on temperature separation in the vortex chamber were investigated experimentally.
基金supported in part by the National Natural Science Foundation of China under Grants 42192581,42090012,and 42071308in part by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)under Grant 2019QZKK0206in part by the open fund of Beijing Engineering Research Center for Global Land Remote Sensing Products.
文摘This paper extends a new temperature and emissivity separation(TES)algorithm for retrieving land surface temperature and emissivity(LST and LSE)to the Advanced Geosynchronous Radiation Imager(AGRI)onboard Fengyun-4A,China’s newest geostationary meteorological satellite.The extended TES algorithm was named the AGRI TES algorithm.The AGRI TES algorithm employs a modified water vapor scaling(WVS)method and a recalibrated empirical function over vegetated surfaces.In situ validation and cross-validation are utilized to investigate the accuracy of the retrieved LST and LSE.LST validation using the collected field measurements showed that the mean bias and RMSE of AGRI TES LST are 0.58 and 2.93 K in the daytime and−0.30 K and 2.18 K at nighttime,respectively;the AGRI official LST is systematically underestimated.Compared with the MODIS LST and LSE products(MYD21),the average bias and RMSE of AGRI TES LST are−0.26 K and 1.65 K,respectively.The AGRI TES LSE outperforms the AGRI official LSE in terms of accuracy and spatial integrity.This study demonstrates the good performance of the AGRI TES algorithm for the retrieval of high-quality LST and LSE,and the potential of the AGRI TES algorithm in producing operational LST and LSE products.
基金This work was partially supported by the Tarbiat Modares University Agrohydrology Research Group[Grant No.IG39713]。
文摘Exploring spatial and temporal land-use changes is valuable for local governments to address issues of sustainability and planning policy where urbanization and industrialization are taking place.Besides anthropogenic effects,natural driving forces like climate change may also affect sustainability.However,such relationships have not been studied minutely.Hence,this study first investigates the land-use changes and their relationship with land surface temperature(LST)for the Shazand Watershed,Iran,in 1986,1998,2008,and 2016 coincided with supplementary industrialization stages.Furthermore,the relations among LST and other biophysical parameters,including Normalized Difference Vegetation Index(NDVI),Normalized Difference Buildup Index(NDBI),and Normalized Difference Water Index(NDWI),were analyzed,and corresponding variations were explored.The results indicated that the mean LST of the study watershed has an increasing trend from 1986 to 2008 due to land-use change and drought intensification.Later,LST decreased in 2016.Lower LST was associated with irrigation farming and orchard,and higher LST was related to sparse oak forest areas.There was also a negative correlation between LST and NDVI.As a result,it was inferred that greenery declined LST.Conversely,a positive correlation was found between LST and NDBI resulting from the built-up areas.Since LST could influence biological,physical,chemical processes,it can therefore be supported as an effective index for environmental sustainability assessment.