Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and ...Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.展开更多
In order to utilize slag discarded by nickel plants, the selective recovery of nickel and copper versus iron was investigated by selective reduction, which was achieved by controlling the reduction parameters and magn...In order to utilize slag discarded by nickel plants, the selective recovery of nickel and copper versus iron was investigated by selective reduction, which was achieved by controlling the reduction parameters and magnetic separation process on bench scale. The results show that increasing the basicity (mass ratio of CaO to SIO2) of nickel slag facilitates the enrichment of nickel and copper The process parameters for selective reduction were optimized as follows: basicity of 0.15, reducing at 1200 ~C for 20 min, 5% coal on a dried slag mass base. The grinding-magnetic separation results of reduced briquettes show that concentrate containing 3.25%Ni, 1.20%Cu and 75.26%Fe is obtained and selective enrichment is achieved with a recovery of 82.20%, 80.00% for nickel and copper respectively, while the recovery of iron is only 42.17%. The S and P contents are not reduced obviously and further research may be needed to examine the behaviors of S and P in the process.展开更多
Direct air capture(DAC)has attracted increasing interest and investment over the past few years.There are a fast-growing number of companies that entered the field and demonstrated DAC carbon removal setups and potent...Direct air capture(DAC)has attracted increasing interest and investment over the past few years.There are a fast-growing number of companies that entered the field and demonstrated DAC carbon removal setups and potential.However,current DAC methods are still based on solid absorbents or alkali solutions approaches which have low capture efficiency and low energy efficiency.This highlight proposed a promising CO_(2) capture technology,an electric energy driven closed-loop system for the direct removal of CO_(2) from ambient air which are based on two individual technologies:Polyam-N-Cu hybrid system promoted CO_(2) capture with ocean as anthropogenic CO_(2) sink and a chloride-mediated electrochemical pH swing system to remove CO_(2) from oceanwater.展开更多
The chloridizing segregation and magnetic separation of low-grade nickel laterites from Yunnan province of China was investigated.The nickel laterites were characterized by microscopic investigations,using X-ray diffr...The chloridizing segregation and magnetic separation of low-grade nickel laterites from Yunnan province of China was investigated.The nickel laterites were characterized by microscopic investigations,using X-ray diffractometry(XRD)and energy dispersive spectrometry(EDS)techniques.The pellets,which were prepared with magnesium chloride and coke as chloride agent and reductant respectively,were heated to a high temperature,and the pellets after cooling were crushed for magnetic separation.A series of experiments were conducted to examine the effect of chlorinating agent dosage,reductant dosage,chloridizing temperature and chloridizing time on enrichment grade of Ni and Co.The results indicate that the four factors have significant effects on the extractions of Ni and Co.The optimum conditions are as follows:the amounts of magnesium chloride and coke are 6%and 2%,respectively,chloridizing temperature is 1 253 K,and chloridizing time is 90 min.Under the conditions,extractions of Ni and Co reach 91.5%and 82.3%,respectively.展开更多
Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulator...Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulators such as tannin,water glass,sodium carbon-ate,and sodium hexametaphosphate are more widely used in industry.However,they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests.Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing,we used a tannin pretreatment method for separating magnesite and dolomite.Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite.Moreover,the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased,respectively,in the presence of NaOl.Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface.X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite.展开更多
The sticking phenomenon between molten slag and refractory is one of the crucial problems when preparing ferronickel from laterite ore using rotary hearth fulnace or rotary kiln processes. This study aims to ameliorat...The sticking phenomenon between molten slag and refractory is one of the crucial problems when preparing ferronickel from laterite ore using rotary hearth fulnace or rotary kiln processes. This study aims to ameliorate sticking problems by using silicon dioxide (SiO2) to adjust the melting degree of file briquette during reduction roasting. Thermodynamic analysis indicates that the melting temperature of the slag gradually increases with an increase in the SiO2 proportion (SiO2/(SiO2 + A1203 + MgO) mass ratio). Experimental validations also prove that the briquette retains its original shape when the SiO2 proportion is greater than 75wt%, and sticking problems axe avoided during reduction. A ferronickel product with 8.33wt% Ni and 84.71wt% Fe was prepared via reductive roasting at 1500~C for 90 min with a SiO2 proportion of 75wt% and a C/O molar ratio of 1.0 followed by dry magnetic separation; the corresponding recoveries of Ni and Fe reached 75.70% and 77.97%, respectively. The micro stxucture and phase txmlsformation of reduced briquette reveals that the aggregation and growth of ferroinckel particles were not significantly affected after adding SiO2 to the reduction process.展开更多
Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biol...Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development.展开更多
The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,ir...The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.展开更多
A direct solvent extraction(DSX) process for purifying nickel and cobalt from the nitric acid leach solution of nickel laterite ores was conceived and experimentally probed. The proposed process consists of two solv...A direct solvent extraction(DSX) process for purifying nickel and cobalt from the nitric acid leach solution of nickel laterite ores was conceived and experimentally probed. The proposed process consists of two solvent extraction(SX) steps but with only one extractant - bis(2,4,4-trimethylpentyl)phosphinic acid(Cyanex? 272) - used in both steps. The first extraction step involved the removal of aluminum and zinc, whereas the second extraction step involved the separation of cobalt along with manganese from nickel. The experimental results showed essentially quantitative removal of aluminum(〉97%) and zinc(〉99%) in a single extraction stage using 20vol% Cyanex 272 at pH 2.1. Some cobalt(32%) and manganese(55%) were co-extracted but were easily scrubbed out completely from the loaded organic phase using dilute sulfuric acid at pH ≤ 1.38. Cobalt and manganese in the first extraction raffinate were extracted completely in four extraction stages at staggered pH values of 4.0, 4.4, 4.5, and 4.0 in the first, second, third, and fourth stages, respectively, using also 20vol% Cyanex 272. A small amount of nickel(up to 6.6%) was co-extracted but was easily scrubbed out completely with dilute sulfuric acid at pH 2.0. A flow diagram showing the input and output conditions and the metals separated under the deduced optimum conditions is presented.展开更多
The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the...The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.展开更多
Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,s...Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.展开更多
The enrichment of Ni from a low-grade saprolitic laterite ore,which has been pre-treated by high pressure grinding roller(HPGR) to be 74% passing 0.074 mm and contains 0.92% Ni,18.47% Fe,10.61% MgO and 42.27% SiO2,w...The enrichment of Ni from a low-grade saprolitic laterite ore,which has been pre-treated by high pressure grinding roller(HPGR) to be 74% passing 0.074 mm and contains 0.92% Ni,18.47% Fe,10.61% MgO and 42.27% SiO2,was conducted by using pelletizing,rotary kiln reduction and magnetic separation process on a semi industrial scale,and the effects of reduction duration,mass ratio of coal to pellets(C/P),the types of magnetic separator,the sections of grinding-separation and the grinding fineness on the recovery of Ni and Fe were examined.It is shown that nickel concentrate containing 3.13 % Ni and 59.20 % Fe was achieved at recoveries of 84.36 % and 71.51% for Ni and Fe,respectively under the following conditions:reducing at (1120±40) ℃ for 120 min,C/P being 1.0,wet grinding of reduced pellets up to 70%-87% passing 0.074 mm and a magnetic field intensity of 238.8 kA/m during the first section of grinding-magnetic separation,and a grinding fineness of 84%-91% passing 0.045 mm and a magnetic intensity of 39.8 kA/m during the second section of grinding-magnetic separation.The enriched Ni containing concentrate has a low content of S and P,and can be used for further processing to produce high-grade ferronickel alloy.展开更多
Extraction and separation of nickel and cobalt from saprolite laterite ore were studied by using a method of microwave-assisted hydrothermal leaching and chemical deposition. The effects of leaching temperature and ti...Extraction and separation of nickel and cobalt from saprolite laterite ore were studied by using a method of microwave-assisted hydrothermal leaching and chemical deposition. The effects of leaching temperature and time on the extraction efficiencies of Ni2+ and Co2+ were investigated in detail under microwave conditions. It is shown that the extraction efficiencies of Ni2+ and Co2+ from the ore pre-roasted at 300℃ for 5 h were 89.19% and 61.89% when the leaching temperature and time were about 70℃ and 60 min, respectively. For the separation process of Ni and Co, the separation of main chemical components was performed by adjusting the pH values of sulfuric leaching solutions using a NaOH solution based on the different pH values of precipitation for metal hydroxides. The final separation efficiencies of Ni and Co were 77.29% and 65.87%, respectively. Furthermore, the separation efficiencies of Fe of 95.36% and Mg of 92.2% were also achieved at the same time.展开更多
The separation of cobalt and nickel in the ammoniacal sulfate solution by non equilibrium solvent extraction with a phosphate (P303) as extractant was studied. In the experiment, the effects of equilibrium pH value in...The separation of cobalt and nickel in the ammoniacal sulfate solution by non equilibrium solvent extraction with a phosphate (P303) as extractant was studied. In the experiment, the effects of equilibrium pH value in aqueous phase, contact time of the two phases, the air blowing time for feed liquor in the open beaker on percentage extraction of cobalt and nickel and percentage reextraction of nickel from the loaded organic phase with dilute H 2SO 4. etc were studied. The results showed that: Co(Ⅱ) can be oxidized to Co(Ⅲ) ammino complex by adding (NH 4) 2S 2O 8 or blowing air to the aqueous phase, and Co(Ⅲ) ammino complex is a kind of kinetically inert complex. Its extractive speed is very slow, while the nickel′s is much faster than that of cobalt. By controlling the contact time of the two phases, nickel can be separated from cobalt by non equilibrium solvent extraction. Then nickel was reextracted from the loaded organic phase with dilute H 2SO 4.展开更多
Three kinds of dialkylphosphinic acids(DAPAs),i.e.dihexylphophinic acid(DHPA),di-(2,4,4-trimethylpentyl) phosphinic acid(DTMPPA)and didecylphophinic acid(DDPA),were synthesized through free radical addition reaction.T...Three kinds of dialkylphosphinic acids(DAPAs),i.e.dihexylphophinic acid(DHPA),di-(2,4,4-trimethylpentyl) phosphinic acid(DTMPPA)and didecylphophinic acid(DDPA),were synthesized through free radical addition reaction.The influence of the types of initiator,reation time and reaction temperature on the yield of DAPAs were investigated.The products were characterized by NMR and MS.By using DHPA,DTMPPA and DDPA(10%in kerosene)as extractants,the extraction of Co2 +and Ni2 +in sulphate medium at different equilibrium pH values were measured.The results show that the maximum yield of DHPA, DTMPPA and DDPA can all be achieved at about 130℃under the initiation of di-tert-butyl peroxide(DTBP).All the extraction of cobalt with respect to DHPA,DDPA and DTMPPA precedes that of nickel.The difference in pH1/2 value(defined as the pH at which 50%metal extraction occurs)between cobalt and nickel increases in the following sequence from large to small:DHPA,DDPA and DTMPPA,which indicates that the separation ability for cobalt and nickel ascends from DHPA,DDPA to DTMPPA.展开更多
The separation and recovery of Ni from the copper electrolyte by crystallization of nickel ammonium sulfate double salt were studied.It is found that the solubility of copper sulfate at the same temperature is less th...The separation and recovery of Ni from the copper electrolyte by crystallization of nickel ammonium sulfate double salt were studied.It is found that the solubility of copper sulfate at the same temperature is less than that of nickel sulfate,while the solubility of copper ammonium sulfate is greater than that of nickel ammonium sulfate.So,by adding(NH_(4))_(2)SO_(4),the Ni can be selectively crystallized from the copper electrolyte.By adding(NH_(4))_(2)SO_(4)at the molar ratio of(NH_(4))_(2)SO_(4)/NiSO_(4)≤0.8,and crystallizing at−15℃for 10 h,the Ni in the copper electrolyte can be crystallized in the form of Ni(NH_(4))_(2)(SO_(4))_(2)×6H_(2)O.The qualified product of NiSO_(4)×6H_(2)O can be obtained by pyrolyzing the crystals,dissolving the pyrolysis product in water,and then concentrating the dissolved solution for crystallization.The method of double salt crystallization is a clean,environmentally-friendly,cost-effective and efficient method for separating and recovering nickel from copper electrolyte.展开更多
Nickel, cobalt and copper were separated by solvent extraction with P204. The experimental results show that [Co(NH 3) 6] 3+ is an inert complex in extraction kinetics, therefore cobalt can be separated from nickel an...Nickel, cobalt and copper were separated by solvent extraction with P204. The experimental results show that [Co(NH 3) 6] 3+ is an inert complex in extraction kinetics, therefore cobalt can be separated from nickel and copper by non equilibrium solvent extraction. Under the conditions of temperature 25?℃, contact time of two phases 10?min, phase ratio 1∶1, aqueous pH 10.10 and concentration of P204 20%, [Co(NH 3) 6] 3+ is hardly extracted by P204, while the percentage extractions of nickel and copper are 79.3% and 93.9% respectively. Nickel and copper are separated by equilibrium solvent extraction with P204. Under the conditions of temperature 25?℃, contact time of two phases 1?min, phase ratio 1∶1, equilibrium pH 4.01 and concentration of P204 20%, the separation factor of copper and nickel is 216.展开更多
Na_(2)S,Na_(2)CO_(3),FeO,FeS and carbon were used to regulate the properties of slag or metal fractions,and their effects on metal growth and metal–slag separation behavior were investigated.The growth of ferronickel...Na_(2)S,Na_(2)CO_(3),FeO,FeS and carbon were used to regulate the properties of slag or metal fractions,and their effects on metal growth and metal–slag separation behavior were investigated.The growth of ferronickel grains can be enhanced by adding these additives,and Na_(2)S was the most effective.Na_(2)S,Na_(2)CO_(3) and FeO mainly affected the properties of slag,while carbon and FeS affected the metal fraction.The onset temperature of metal–slag separation was 1297℃ for the sample without additive,which was decreased to 1123 and 1101℃ after adding 3.30 wt.%Na_(2)S and 4.47 wt.%Na_(2)CO_(3),respectively.The onset temperature of metal–slag separation was mainly controlled by the slag fraction.The average apparent activation energy of metal grain growth was 125.32 kJ/mol without additive,and it decreased obviously after adding different additives.Na_(2)S also had the most remarkable effect on the decrease in activation energy.展开更多
Separation of copper and nickel by liquid-liquid extraction from aqueous solutions was studied using LIX 664N in kerosene as solvent. Both metals were taken in their sulfate form and ratio of copper to nickel in feed ...Separation of copper and nickel by liquid-liquid extraction from aqueous solutions was studied using LIX 664N in kerosene as solvent. Both metals were taken in their sulfate form and ratio of copper to nickel in feed solutions was maintained as 10:1. LIX 664N concentration in kerosene was varied from 10% to 40% (v/v) and its effect was studied on percent extraction of copper and nickel for organic to aqueous (O:A) phase ratio of 2:1 at pH 2. Experimental results showed that at pH 2, copper was selectively extracted from its mixture with nickel. Selectivity for copper extraction was as high as 6000 with 40% LIX 664N. Calculations using extraction isotherm indicate almost complete recovery of copper in two stages with O:A ratio of 1:1 and in one stage with O:A ratio of 2:1. After extraction of copper, the pH of raffinate containing nickel was adjusted to a value of 9 by addition of ammonia solution. The effect of LIX 664N concentration on extraction of nickel was studied. Up to 80% nickel could be extracted with 30% LIX 664N at O:A phase ratio of 2:1. Stripping of copper from the organic phase with 180 g/l sulfuric acid at O:A phase ratio of 1:1 gave 98.5% copper recovery in a two-stage operation.展开更多
The adsorption process of droplets on the liquid-liquid interface and phase separation process can regulate the spatial distribution of the fluid system,which are crucial for chemical engineering.However,the cross-lin...The adsorption process of droplets on the liquid-liquid interface and phase separation process can regulate the spatial distribution of the fluid system,which are crucial for chemical engineering.However,the cross-linking reaction,which is widely used in the field of polymers,can change the physical properties of the fluids and affect the flow behavior accordingly.A configuration of microchannels is designed to conveniently generate uniform droplets in one phase of the parallel flow.The flow behavior of the adsorption process of sodium alginate droplets on the liquid-liquid interface is investigated,and the subsequent process of phase separation is studied.In the process of droplet adsorption,the crosslinking reaction occurs synchronously,which makes the droplet viscosity and the elasticity modules of the droplet surface increase,thus affecting the dynamics of the adsorption process and the equilibrium shape of the droplet.The variation of the adsorption length with time is divided into three stages,which all conform to power law relationship.The exponents of the second and third stages deviate from the results of the Tanner's law.The flow pattern maps of droplet adsorption and phase separation are drawn,and the operating ranges of complete adsorption and complete separation are provided.This study provides a theoretical basis for further studying the flow behavior of droplets with cross-linking reaction in a microchannel.展开更多
基金financially supported by the Original Exploration Project of the National Natural Science Foundation of China(No.52150079)the National Natural Science Foundation of China(Nos.U22A20130,U2004215,and 51974280)+1 种基金the Natural Science Foundation of Henan Province of China(No.232300421196)the Project of Zhongyuan Critical Metals Laboratory of China(Nos.GJJSGFYQ202304,GJJSGFJQ202306,GJJSGFYQ202323,GJJSGFYQ202308,and GJJSGFYQ202307)。
文摘Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.
基金Project([2009]606)supported by the National Development and Reform Commission of ChinaProject(50974135)supported by the National Natural Science Foundation of China
文摘In order to utilize slag discarded by nickel plants, the selective recovery of nickel and copper versus iron was investigated by selective reduction, which was achieved by controlling the reduction parameters and magnetic separation process on bench scale. The results show that increasing the basicity (mass ratio of CaO to SIO2) of nickel slag facilitates the enrichment of nickel and copper The process parameters for selective reduction were optimized as follows: basicity of 0.15, reducing at 1200 ~C for 20 min, 5% coal on a dried slag mass base. The grinding-magnetic separation results of reduced briquettes show that concentrate containing 3.25%Ni, 1.20%Cu and 75.26%Fe is obtained and selective enrichment is achieved with a recovery of 82.20%, 80.00% for nickel and copper respectively, while the recovery of iron is only 42.17%. The S and P contents are not reduced obviously and further research may be needed to examine the behaviors of S and P in the process.
文摘Direct air capture(DAC)has attracted increasing interest and investment over the past few years.There are a fast-growing number of companies that entered the field and demonstrated DAC carbon removal setups and potential.However,current DAC methods are still based on solid absorbents or alkali solutions approaches which have low capture efficiency and low energy efficiency.This highlight proposed a promising CO_(2) capture technology,an electric energy driven closed-loop system for the direct removal of CO_(2) from ambient air which are based on two individual technologies:Polyam-N-Cu hybrid system promoted CO_(2) capture with ocean as anthropogenic CO_(2) sink and a chloride-mediated electrochemical pH swing system to remove CO_(2) from oceanwater.
基金Project(2007CB613607)supported by National Basic Research Program of China
文摘The chloridizing segregation and magnetic separation of low-grade nickel laterites from Yunnan province of China was investigated.The nickel laterites were characterized by microscopic investigations,using X-ray diffractometry(XRD)and energy dispersive spectrometry(EDS)techniques.The pellets,which were prepared with magnesium chloride and coke as chloride agent and reductant respectively,were heated to a high temperature,and the pellets after cooling were crushed for magnetic separation.A series of experiments were conducted to examine the effect of chlorinating agent dosage,reductant dosage,chloridizing temperature and chloridizing time on enrichment grade of Ni and Co.The results indicate that the four factors have significant effects on the extractions of Ni and Co.The optimum conditions are as follows:the amounts of magnesium chloride and coke are 6%and 2%,respectively,chloridizing temperature is 1 253 K,and chloridizing time is 90 min.Under the conditions,extractions of Ni and Co reach 91.5%and 82.3%,respectively.
基金supported by the National Natural Science Foundation of China (Nos.51974064,52174239,and 52374259)the Open Project of the Key Laboratory of Solid Waste Treatment and Resource Utiliza-tion of the Ministry of Education,China (No.23kfgk02).
文摘Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulators such as tannin,water glass,sodium carbon-ate,and sodium hexametaphosphate are more widely used in industry.However,they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests.Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing,we used a tannin pretreatment method for separating magnesite and dolomite.Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite.Moreover,the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased,respectively,in the presence of NaOl.Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface.X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite.
基金the National Natural Science Foundation of China(No.51234010)the Fundamental Research Funds for Central Universities(No.106112017CDJXY130001)for the financial support provided for this research
文摘The sticking phenomenon between molten slag and refractory is one of the crucial problems when preparing ferronickel from laterite ore using rotary hearth fulnace or rotary kiln processes. This study aims to ameliorate sticking problems by using silicon dioxide (SiO2) to adjust the melting degree of file briquette during reduction roasting. Thermodynamic analysis indicates that the melting temperature of the slag gradually increases with an increase in the SiO2 proportion (SiO2/(SiO2 + A1203 + MgO) mass ratio). Experimental validations also prove that the briquette retains its original shape when the SiO2 proportion is greater than 75wt%, and sticking problems axe avoided during reduction. A ferronickel product with 8.33wt% Ni and 84.71wt% Fe was prepared via reductive roasting at 1500~C for 90 min with a SiO2 proportion of 75wt% and a C/O molar ratio of 1.0 followed by dry magnetic separation; the corresponding recoveries of Ni and Fe reached 75.70% and 77.97%, respectively. The micro stxucture and phase txmlsformation of reduced briquette reveals that the aggregation and growth of ferroinckel particles were not significantly affected after adding SiO2 to the reduction process.
基金supported by the Jiangsu Province Natural Science Foundation(Grant No.BK20201492)the Key Medical Research Project of Jiangsu Provincial Health Commission(Grant No.K2019002)the Clinical Capacity Improvement Project of Jiangsu Province People's Hospital(Grant No.JSPH-MA-2021-8).
文摘Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development.
基金Projects(51904058,51734005)supported by the National Natural Science Foundation of ChinaProject(2018YFC1901901902)supported by the National Key Research and Development Program of China
文摘The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.
基金the Indonesia Endowment Fund for Education(LPDP)for the scholarship of Z.T.Ichlas,Shell Chemicals for supplying ShellS ol 2046 and Cytec Australia for supplying Cyanex 272
文摘A direct solvent extraction(DSX) process for purifying nickel and cobalt from the nitric acid leach solution of nickel laterite ores was conceived and experimentally probed. The proposed process consists of two solvent extraction(SX) steps but with only one extractant - bis(2,4,4-trimethylpentyl)phosphinic acid(Cyanex? 272) - used in both steps. The first extraction step involved the removal of aluminum and zinc, whereas the second extraction step involved the separation of cobalt along with manganese from nickel. The experimental results showed essentially quantitative removal of aluminum(〉97%) and zinc(〉99%) in a single extraction stage using 20vol% Cyanex 272 at pH 2.1. Some cobalt(32%) and manganese(55%) were co-extracted but were easily scrubbed out completely from the loaded organic phase using dilute sulfuric acid at pH ≤ 1.38. Cobalt and manganese in the first extraction raffinate were extracted completely in four extraction stages at staggered pH values of 4.0, 4.4, 4.5, and 4.0 in the first, second, third, and fourth stages, respectively, using also 20vol% Cyanex 272. A small amount of nickel(up to 6.6%) was co-extracted but was easily scrubbed out completely with dilute sulfuric acid at pH 2.0. A flow diagram showing the input and output conditions and the metals separated under the deduced optimum conditions is presented.
基金financially supported by the Yunnan Major Scientific and Technological Projects,China (No.202202AG050015)the National Natural Science Foundation of China (No.51464029)。
文摘The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.
基金support from Sichuan Science and Technology Program(2021YFH0116)National Natural Science Foundation of China(No.52170112)DongFang Boiler Co.,Ltd.(3522015).
文摘Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.
基金Project(NDRC-Hitech Office 2009-606)supported by the National Development and Reform Commission of ChinaProject(50974135)supported by the National Natural Science Foundation of China
文摘The enrichment of Ni from a low-grade saprolitic laterite ore,which has been pre-treated by high pressure grinding roller(HPGR) to be 74% passing 0.074 mm and contains 0.92% Ni,18.47% Fe,10.61% MgO and 42.27% SiO2,was conducted by using pelletizing,rotary kiln reduction and magnetic separation process on a semi industrial scale,and the effects of reduction duration,mass ratio of coal to pellets(C/P),the types of magnetic separator,the sections of grinding-separation and the grinding fineness on the recovery of Ni and Fe were examined.It is shown that nickel concentrate containing 3.13 % Ni and 59.20 % Fe was achieved at recoveries of 84.36 % and 71.51% for Ni and Fe,respectively under the following conditions:reducing at (1120±40) ℃ for 120 min,C/P being 1.0,wet grinding of reduced pellets up to 70%-87% passing 0.074 mm and a magnetic field intensity of 238.8 kA/m during the first section of grinding-magnetic separation,and a grinding fineness of 84%-91% passing 0.045 mm and a magnetic intensity of 39.8 kA/m during the second section of grinding-magnetic separation.The enriched Ni containing concentrate has a low content of S and P,and can be used for further processing to produce high-grade ferronickel alloy.
基金financially supported by the National Natural Science Foundation of China(Nos. 51272025,50872011 and 51072022)the National Basic Research Program of China(No. 2007CB613608)the New Century Excellent Researcher Award Program from the Ministry of Education of China (No. NCET-08-0732)
文摘Extraction and separation of nickel and cobalt from saprolite laterite ore were studied by using a method of microwave-assisted hydrothermal leaching and chemical deposition. The effects of leaching temperature and time on the extraction efficiencies of Ni2+ and Co2+ were investigated in detail under microwave conditions. It is shown that the extraction efficiencies of Ni2+ and Co2+ from the ore pre-roasted at 300℃ for 5 h were 89.19% and 61.89% when the leaching temperature and time were about 70℃ and 60 min, respectively. For the separation process of Ni and Co, the separation of main chemical components was performed by adjusting the pH values of sulfuric leaching solutions using a NaOH solution based on the different pH values of precipitation for metal hydroxides. The final separation efficiencies of Ni and Co were 77.29% and 65.87%, respectively. Furthermore, the separation efficiencies of Fe of 95.36% and Mg of 92.2% were also achieved at the same time.
文摘The separation of cobalt and nickel in the ammoniacal sulfate solution by non equilibrium solvent extraction with a phosphate (P303) as extractant was studied. In the experiment, the effects of equilibrium pH value in aqueous phase, contact time of the two phases, the air blowing time for feed liquor in the open beaker on percentage extraction of cobalt and nickel and percentage reextraction of nickel from the loaded organic phase with dilute H 2SO 4. etc were studied. The results showed that: Co(Ⅱ) can be oxidized to Co(Ⅲ) ammino complex by adding (NH 4) 2S 2O 8 or blowing air to the aqueous phase, and Co(Ⅲ) ammino complex is a kind of kinetically inert complex. Its extractive speed is very slow, while the nickel′s is much faster than that of cobalt. By controlling the contact time of the two phases, nickel can be separated from cobalt by non equilibrium solvent extraction. Then nickel was reextracted from the loaded organic phase with dilute H 2SO 4.
基金Projects(2007CB613506)supported by the National Basic Research Program of ChinaProjects(50674060,50734005)supported by the National Natural Science Foundation of China
文摘Three kinds of dialkylphosphinic acids(DAPAs),i.e.dihexylphophinic acid(DHPA),di-(2,4,4-trimethylpentyl) phosphinic acid(DTMPPA)and didecylphophinic acid(DDPA),were synthesized through free radical addition reaction.The influence of the types of initiator,reation time and reaction temperature on the yield of DAPAs were investigated.The products were characterized by NMR and MS.By using DHPA,DTMPPA and DDPA(10%in kerosene)as extractants,the extraction of Co2 +and Ni2 +in sulphate medium at different equilibrium pH values were measured.The results show that the maximum yield of DHPA, DTMPPA and DDPA can all be achieved at about 130℃under the initiation of di-tert-butyl peroxide(DTBP).All the extraction of cobalt with respect to DHPA,DDPA and DTMPPA precedes that of nickel.The difference in pH1/2 value(defined as the pH at which 50%metal extraction occurs)between cobalt and nickel increases in the following sequence from large to small:DHPA,DDPA and DTMPPA,which indicates that the separation ability for cobalt and nickel ascends from DHPA,DDPA to DTMPPA.
基金the National Natural Science Foundation of China(No.50274075).
文摘The separation and recovery of Ni from the copper electrolyte by crystallization of nickel ammonium sulfate double salt were studied.It is found that the solubility of copper sulfate at the same temperature is less than that of nickel sulfate,while the solubility of copper ammonium sulfate is greater than that of nickel ammonium sulfate.So,by adding(NH_(4))_(2)SO_(4),the Ni can be selectively crystallized from the copper electrolyte.By adding(NH_(4))_(2)SO_(4)at the molar ratio of(NH_(4))_(2)SO_(4)/NiSO_(4)≤0.8,and crystallizing at−15℃for 10 h,the Ni in the copper electrolyte can be crystallized in the form of Ni(NH_(4))_(2)(SO_(4))_(2)×6H_(2)O.The qualified product of NiSO_(4)×6H_(2)O can be obtained by pyrolyzing the crystals,dissolving the pyrolysis product in water,and then concentrating the dissolved solution for crystallization.The method of double salt crystallization is a clean,environmentally-friendly,cost-effective and efficient method for separating and recovering nickel from copper electrolyte.
文摘Nickel, cobalt and copper were separated by solvent extraction with P204. The experimental results show that [Co(NH 3) 6] 3+ is an inert complex in extraction kinetics, therefore cobalt can be separated from nickel and copper by non equilibrium solvent extraction. Under the conditions of temperature 25?℃, contact time of two phases 10?min, phase ratio 1∶1, aqueous pH 10.10 and concentration of P204 20%, [Co(NH 3) 6] 3+ is hardly extracted by P204, while the percentage extractions of nickel and copper are 79.3% and 93.9% respectively. Nickel and copper are separated by equilibrium solvent extraction with P204. Under the conditions of temperature 25?℃, contact time of two phases 1?min, phase ratio 1∶1, equilibrium pH 4.01 and concentration of P204 20%, the separation factor of copper and nickel is 216.
基金support from the National Natural Science Foundation of China(No.51904047)the Fundamental and Frontier Research Project of Chongqing,China(No.cstc2020jcyj-msxmX0515)the State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,China.
文摘Na_(2)S,Na_(2)CO_(3),FeO,FeS and carbon were used to regulate the properties of slag or metal fractions,and their effects on metal growth and metal–slag separation behavior were investigated.The growth of ferronickel grains can be enhanced by adding these additives,and Na_(2)S was the most effective.Na_(2)S,Na_(2)CO_(3) and FeO mainly affected the properties of slag,while carbon and FeS affected the metal fraction.The onset temperature of metal–slag separation was 1297℃ for the sample without additive,which was decreased to 1123 and 1101℃ after adding 3.30 wt.%Na_(2)S and 4.47 wt.%Na_(2)CO_(3),respectively.The onset temperature of metal–slag separation was mainly controlled by the slag fraction.The average apparent activation energy of metal grain growth was 125.32 kJ/mol without additive,and it decreased obviously after adding different additives.Na_(2)S also had the most remarkable effect on the decrease in activation energy.
文摘Separation of copper and nickel by liquid-liquid extraction from aqueous solutions was studied using LIX 664N in kerosene as solvent. Both metals were taken in their sulfate form and ratio of copper to nickel in feed solutions was maintained as 10:1. LIX 664N concentration in kerosene was varied from 10% to 40% (v/v) and its effect was studied on percent extraction of copper and nickel for organic to aqueous (O:A) phase ratio of 2:1 at pH 2. Experimental results showed that at pH 2, copper was selectively extracted from its mixture with nickel. Selectivity for copper extraction was as high as 6000 with 40% LIX 664N. Calculations using extraction isotherm indicate almost complete recovery of copper in two stages with O:A ratio of 1:1 and in one stage with O:A ratio of 2:1. After extraction of copper, the pH of raffinate containing nickel was adjusted to a value of 9 by addition of ammonia solution. The effect of LIX 664N concentration on extraction of nickel was studied. Up to 80% nickel could be extracted with 30% LIX 664N at O:A phase ratio of 2:1. Stripping of copper from the organic phase with 180 g/l sulfuric acid at O:A phase ratio of 1:1 gave 98.5% copper recovery in a two-stage operation.
基金supported by the National Natural Science Foundation of China(92034303,21978197)。
文摘The adsorption process of droplets on the liquid-liquid interface and phase separation process can regulate the spatial distribution of the fluid system,which are crucial for chemical engineering.However,the cross-linking reaction,which is widely used in the field of polymers,can change the physical properties of the fluids and affect the flow behavior accordingly.A configuration of microchannels is designed to conveniently generate uniform droplets in one phase of the parallel flow.The flow behavior of the adsorption process of sodium alginate droplets on the liquid-liquid interface is investigated,and the subsequent process of phase separation is studied.In the process of droplet adsorption,the crosslinking reaction occurs synchronously,which makes the droplet viscosity and the elasticity modules of the droplet surface increase,thus affecting the dynamics of the adsorption process and the equilibrium shape of the droplet.The variation of the adsorption length with time is divided into three stages,which all conform to power law relationship.The exponents of the second and third stages deviate from the results of the Tanner's law.The flow pattern maps of droplet adsorption and phase separation are drawn,and the operating ranges of complete adsorption and complete separation are provided.This study provides a theoretical basis for further studying the flow behavior of droplets with cross-linking reaction in a microchannel.