For the car sequencing(CS) problem, the draw-backs of the "sliding windows" technique used in the objective function have not been rectified, and no high quality initial solution has been acquired to accelerate th...For the car sequencing(CS) problem, the draw-backs of the "sliding windows" technique used in the objective function have not been rectified, and no high quality initial solution has been acquired to accelerate the improvement of the solution quality. Firstly, the objective function is improved to solve the double and bias counting of violations broadly discussed. Then, a new method combining heuristic with constraint propagation is proposed which constructs initial solutions under a parallel framework. Based on constraint propagation, three filtering rules are designed to intersecting with three greedy functions, so the variable domain is narrowed in the process of the construction. The parallel framework is served to show its robustness in terms of the quality of the solution since it greatly increases the performance of obtaining the best solution. In the computational experiments, 109 instances of 3 sets from the CSPLib' s benchmarks are used to test the performance of the proposed method. Experiment results show that the proposed method outperforms others in acquiring the best-known results for 85 best-known results of 109 are obtained with only one construction. The proposed research provides an avenue to remedy the deficiencies of "sliding windows" technique and construct high quality initial solutions.展开更多
Job shop scheduling has become the basis and core of advanced manufacturing technology. Various differences exist between academic research and practical production. The majority of previous researches on job shop sch...Job shop scheduling has become the basis and core of advanced manufacturing technology. Various differences exist between academic research and practical production. The majority of previous researches on job shop scheduling problem (JSSP)describe the basic production environment, which have a single objective and limited constraints. However,a practical process of production is characterized by having multiple objectives,no-wait constraint,and limited storage. Thus this research focused on multiobjective,no-wait JSSP. To analyze the problem,it was further divided into two sub-problems, namely, sequencing and timetabling. Hybrid non-order strategy and modified complete local search with memory were used to solve each problem individually. A Pareto-based strategy for performing fitness assessment was presented in this study. Various experiments on benchmark problems proved the feasibility and effectiveness of the proposed algorithm.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51435009,71302085)Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ14E080002)K.C.Wong Magna Fund in Ningbo University
文摘For the car sequencing(CS) problem, the draw-backs of the "sliding windows" technique used in the objective function have not been rectified, and no high quality initial solution has been acquired to accelerate the improvement of the solution quality. Firstly, the objective function is improved to solve the double and bias counting of violations broadly discussed. Then, a new method combining heuristic with constraint propagation is proposed which constructs initial solutions under a parallel framework. Based on constraint propagation, three filtering rules are designed to intersecting with three greedy functions, so the variable domain is narrowed in the process of the construction. The parallel framework is served to show its robustness in terms of the quality of the solution since it greatly increases the performance of obtaining the best solution. In the computational experiments, 109 instances of 3 sets from the CSPLib' s benchmarks are used to test the performance of the proposed method. Experiment results show that the proposed method outperforms others in acquiring the best-known results for 85 best-known results of 109 are obtained with only one construction. The proposed research provides an avenue to remedy the deficiencies of "sliding windows" technique and construct high quality initial solutions.
基金National Natural Science Foundations of China(Nos.61174040,61573144,11304200)Shanghai Commission of Science and Technology,China(No.12JC1403400)+1 种基金Shanghai Municipal Education Commission for Training Young Teachers,China(No.ZZSDJ15031)Shanghai Teaching and Reforming Experimental Undergraduate Majors Construction Program,China
文摘Job shop scheduling has become the basis and core of advanced manufacturing technology. Various differences exist between academic research and practical production. The majority of previous researches on job shop scheduling problem (JSSP)describe the basic production environment, which have a single objective and limited constraints. However,a practical process of production is characterized by having multiple objectives,no-wait constraint,and limited storage. Thus this research focused on multiobjective,no-wait JSSP. To analyze the problem,it was further divided into two sub-problems, namely, sequencing and timetabling. Hybrid non-order strategy and modified complete local search with memory were used to solve each problem individually. A Pareto-based strategy for performing fitness assessment was presented in this study. Various experiments on benchmark problems proved the feasibility and effectiveness of the proposed algorithm.