Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all whil...Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.展开更多
This research is focused on the analysis of the sequence stratigraphic units of F3 Block,within a wave-dominated delta of Plio–Pleistocene age.Three wells of F3 block and a 3D seismic data,are utilized in this resear...This research is focused on the analysis of the sequence stratigraphic units of F3 Block,within a wave-dominated delta of Plio–Pleistocene age.Three wells of F3 block and a 3D seismic data,are utilized in this research.The conventional techniques of 3D seismic interpretation were utilized to mark the 11 surfaces on the seismic section.Integration of seismic sequence stratigraphic interpretation,using well logs,and subsequent 3D geostatistical modeling,using seismic data,aided to evaluate the shallow hydrocarbon traps.The resulting models were obtained using System Tract and Facies models,which were generated by using sequential stimulation method and their variograms made by spherical method,moreover,these models are validated via histograms.The CDF curve generated from upscaling of well logs using geometric method,shows a good relation with less percentage of errors(1 to 2 for Facies and 3 to 4 for System Tract models)between upscaled and raw data that complements the resulted models.These approaches help us to delineate the best possible reservoir,lateral extent of system tracts(LST and/or HST)in the respective surface,and distribution of sand and shale in the delta.The clinoform break points alteration observed on seismic sections,also validates the sequence stratigraphic interpretation.The GR log-based Facies model and sequence stratigraphy-based System Tract model of SU-04-2 showed the reservoir characteristics,presence of sand bodies and majorly LST,respectively,mainly adjacent to the main fault of the studied area.Moreover,on the seismic section,SU-04-2 exhibits the presence of gas pockets at the same location that also complements the generated Facies and System Tract models.The generated models can be utilized for any similar kind of study and for the further research in the F3 block reservoir characterization.展开更多
In order to reveal the relationship between the penecontemporaneous karstification and sedimentary microtopography in sequence stratigraphy,the sequence stratigraphic framework of Lianglitage formation in Upper Ordovi...In order to reveal the relationship between the penecontemporaneous karstification and sedimentary microtopography in sequence stratigraphy,the sequence stratigraphic framework of Lianglitage formation in Upper Ordovician is studied according to the well drilling,logging,geophysical data,detailed observations of core and the paleontology.The Lianglitage formation belongs to the sequence Ⅳ of Ordovician.The second member of Lianglitage formation is prograde sedimentation in highstand systems tract,and is favorable for developing reef flat.The development scale and thickness of reef flat are controlled by the variation of secondary sea level.The types and characteristics of karst in the highstand systems tract show that the late highstand systems tract is dissolved and cemented by the meteoric fresh water and mixed water.Penecontemporaneous karstification is developed at the top of parasequence and high place of geomorphology.Atmospheric diagenetic lens is formed.The developing regulations and controlling factors of penecontemporaneous karstification can provide new clues to the prediction and exploration of favorable reservoir in this area.展开更多
Multiple coal seams and interbedded rock assemblages formed in vertical progression due to the influence of multiple stages of sea level transgressions.Based on mercury injection experiment,low temperature liquid nitr...Multiple coal seams and interbedded rock assemblages formed in vertical progression due to the influence of multiple stages of sea level transgressions.Based on mercury injection experiment,low temperature liquid nitrogen experiment,porosity and permeability experiment and breakthrough pressure experiment,the vertical variation characteristics of coal-bearing strata in Gujiao block are explained in detail.The results of the mercury injection and low temperature liquid nitrogen experiments show that the pore structure characteristics fluctuate with increasing depth in the strata,with fewer micropores followed by transition pores.The BET specific surface area and average pore diameter of the Shanxi Formation are generally larger than those of the Taiyuan Formation.Due to the continuous cyclic sequence stratigraphy changes,the porosity,permeability,breakthrough pressure and breakthrough time of the samples show a certain cyclicity.Within the same sequence,the porosity is larger,and the permeability is smaller near the maximum flooding surface.Although the permeability of the sandstone samples is higher,the porosity is lower,and the breakthrough pressure and breakthrough times are greater.The strata in the study area formed in an oxidized environment that was affected by freshwater,and the pore structure of different lithologies is quite different.After the formation of sandstone,the intergranular pores generally underwent filling with secondary quartz,clay minerals and organic matter,resulting in low porosity and permeability.展开更多
To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra...To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.展开更多
Permian rocks in Kalmard block are recognized with Khan Group, enjoying various characteristics in different outcrops. This group is made up of three informal formations, namely Chili, Sartakht and Hermez. Middle Perm...Permian rocks in Kalmard block are recognized with Khan Group, enjoying various characteristics in different outcrops. This group is made up of three informal formations, namely Chili, Sartakht and Hermez. Middle Permian deposits (Sartakht formation) are composed chiefly of sandstone and carbonate rocks. This formation is composed of 58.6 m sandstone and dolomitic limestone in the Bakhshi section. Lower Permian carbonate deposits (Chili formation) unconformably underlie this formation while lateritic paleosols of upper Permian (Hermez formation) are depicted overlying an erosional unconformity above this formation. According to lithologic and microscopic investigations, the deposits of Sartakht formation can be divided into 2 siliciclastic petrofacies and 12 carbonate microfacies. Field observations, along with microscopic examinations, have resulted in identifying tidal flat, lagoon, shoal and open marine environments in the rocks of the studied formation. Vertical changes of microfacies and depth variation curve point to the high thickness of the microfacies of lagoon and shoal environments and low thickness of the microfacies of tidal flat and open marine environments. The carbonate-siliciclastic sequence of Sartakht formation is made up of a third-order depositional sequence, separated from carbonate depositions of lower Permian (Chili formation) and lateritic paleosols of upper Permian by type 1 sequence boundary (SB1). Siliciclastic deposits include LST system tract, and carbonate microfacies involve TST and HST system tracts, separated from each other by MFS. Sartakht formation rocks in Bakhshi section are deposited in a low-angle homoclinal ramp, mostly in the inner ramp, located in the south of Paleotethys Ocean. The depositional sequence identified in Sartakht formation points to the age of middle Permian, conforming to middle Absaroka II supersequence. The upper erosional boundary between Sartakht and Hermez formations conforms to the global-scale sea level fall.展开更多
Deposits of Lower Carboniferous rocks in Kalmard block are recognized by Gachal informal formation, showing various characteristics in different outcrops. Lower Carboniferous deposits (Gachal formation) are composed c...Deposits of Lower Carboniferous rocks in Kalmard block are recognized by Gachal informal formation, showing various characteristics in different outcrops. Lower Carboniferous deposits (Gachal formation) are composed chiefly of carbonate, evaporite and siliciclastic rocks. This formation is composed of 198 m sandstone, limestone and dolomite as well as a small amount of shale, marl and gypsum in the Madbeiki section. This formation unconformably underlies Precambrian metamorphic deposits (Kalmard formation) while lateritic soils of lower Permian (Chili formation) are depicted overlying an erosional unconformity above this formation. According to lithologic and microscopic investigations, the deposits of Gachal formation can be divided into 1 siliciclastic petrofacies, 1 evaporite microfacies and 16 carbonate microfacies. Field observations, along with microscopic examinations, have resulted in identifying tidal flat, lagoon, shoal and open marine environments in the rocks of the studied formation. Vertical changes of microfacies and depth variation curve indicate the high thickness of the microfacies of tidal flat, lagoon and shoal environments and low thickness of the microfacies of open marine environment. The carbonate-evaporite-siliciclastic sequence of Gachal formation is made up of three third-order depositional sequence, separated each other by type 1 sequence boundary (SB1). Siliciclastic and evaporite deposits include LST system tract, and carbonate microfacies involve TST and HST system tracts, separated from each other by MFS. Gachal formation rocks in Madbeiki section are deposited in a low-angle homoclinal ramp, mostly in the inner ramp, located in the southern Paleotethys Ocean. The depositional sequence identified in Gachal formation points to the age of Lower Carboniferous, conforming to upper Kaskaskia super sequence. The upper erosional boundary between Gachal and Chili formations conform to the global-scale sea level fall.展开更多
A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP) is proposed. A new class of block design-Difference Family Pair (DFP) is also proposed.The relationship between PCSP and DFP, the proper...A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP) is proposed. A new class of block design-Difference Family Pair (DFP) is also proposed.The relationship between PCSP and DFP, the properties and existing conditions of PCSP and the recursive constructions for PCSP are given.展开更多
The quantitative description of the sequence structure of emulsion-processed SBR and solution-processed SBR (by lithium catalyst)was carried out based on their spectral data Of ^(13)C-NMR.The calculating formulae whic...The quantitative description of the sequence structure of emulsion-processed SBR and solution-processed SBR (by lithium catalyst)was carried out based on their spectral data Of ^(13)C-NMR.The calculating formulae which could be used to obtain diad concentration from the peak intensifies of carbon spectra, average block length, average number of block, and the microstructure composition of the molecular chain were derived. The quantitative result showed that on the molecular chain styrene unit had the tendency to attach to trans-1,4 butadiene unit. The calculated result of the microstructure was in good agreement with that obtained through IR measurement.展开更多
This study is focused on sedimentary environments, facies distribution, and sequence stratigraphy. The facies and sequence stratigraphic analyses of the Bahram Formation(middleelate Devonian) in southcentral Iran ar...This study is focused on sedimentary environments, facies distribution, and sequence stratigraphy. The facies and sequence stratigraphic analyses of the Bahram Formation(middleelate Devonian) in southcentral Iran are based on two measured stratigraphic sections in the southern Tabas block. The Bahram Formation overlies red sandstones Padeha Formation in sections Hutk and Sardar and is overlain by Carboniferous carbonate deposits of Hutk Formation paraconformably, with a thickness of 354 and386 m respectively. Mixed siliciclastic and carbonate sediments are present in this succession. The field observations and laboratory studies were used to identify 14 micro/petrofacies, which can be grouped into 5 depositional environments: shore, tidal flat, lagoon, shoal and shallow open marine. A mixed carbonate-detrital shallow shelf is suggested for the depositional environment of the Bahram Formation which deepens to the east(Sardar section) and thins in southern locations(Hutk section). Three 3rdorder cyclic siliciclastic and carbonate sequences in the Bahram Formation and one sequence shared with the overlying joint with Hutk Formation are identified, on the basis of shallowing upward patterns in the micro/pertofacies.展开更多
In-loop filtering significantly helps detect and remove blocking artifacts across block boundaries in low bitrate coded High Efficiency Video Coding(HEVC)frames and improves its subjective visual quality in multimedia...In-loop filtering significantly helps detect and remove blocking artifacts across block boundaries in low bitrate coded High Efficiency Video Coding(HEVC)frames and improves its subjective visual quality in multimedia services over communication networks.However,on faster processing of the complex videos at a low bitrate,some visible artifacts considerably degrade the picture quality.In this paper,we proposed a four-step fuzzy based adaptive deblocking filter selection technique.The proposed method removes the quantization noise,blocking artifacts and corner outliers efficiently for HEVC coded videos even at low bit-rate.We have considered Y(luma),U(chromablue),and V(chroma-red)components parallelly.Finally,we have developed a fuzzy system to detect blocking artifacts and use adaptive filters as per requirement in all four quadrants,namely up 45◦,down 45◦,up 135◦,and down 135◦across horizontal and vertical block boundaries.In this context,experimentation is done on a wide variety of videos.An objective and subjective analysis is carried out with MATLAB software and Human Visual System(HVS).The proposed method substantially outperforms existing postprocessing deblocking techniques in terms of YPSNR and BD_rate.In the proposed method,we achieved 0.32–0.97 dB values of YPSNR.Our method achieved a BD_rate of+1.69%for the luma component,−0.18%(U)and−1.99%(V)for chroma components,respectively,with respect to the stateof-the-art methods.The proposed method proves to have low computational complexity and has better parallel processing,hence suitable for a real-time system in the near future.展开更多
The 5’-end of the mitochondrial control region sequences of three flatfishes (Pleuronectiformes: Pleuronectidae) were amplified and sequenced. These sequences were compared with those of other three Pleuronectids spe...The 5’-end of the mitochondrial control region sequences of three flatfishes (Pleuronectiformes: Pleuronectidae) were amplified and sequenced. These sequences were compared with those of other three Pleuronectids species retrieved from GenBank. A phylogenetic tree was constructed based on the partial control region sequences. The results of phyloge- netic analysis are consistent with those of conventional systematics. Compared to previous studies, the structure of the 5’-end of mitochondrial control region was analyzed. The terminal associated sequence motif and its complementary motif were i- dentified at the 5’-end of the sequences. A conserved sequence block, named as CM5’d, was identified in the 5’-end of con- trol region sequences in all Pleuronectids. Another central conserved sequence block, named as CSB-F, was detected in the central conserved blocks.展开更多
The deposits of Lower Carboniferous rocks in Kalmard Block are characterized by Gachal informal formation, showing various properties in different outcrops. These deposits (in Gachal formation) are composed chiefly of...The deposits of Lower Carboniferous rocks in Kalmard Block are characterized by Gachal informal formation, showing various properties in different outcrops. These deposits (in Gachal formation) are composed chiefly of carbonate, evaporite and siliciclastic rocks. This formation commonly hosts 190 m sandstone, limestone, dolomitic limestone and dolomite as well as a small amount of shale and marl in the Bakhshi section. It unconformably underlies Devonian deposits (Rahdar formation) while lateritic soils of lower Permian (Chili formation) are depicted overlying an erosional unconformity above this formation. The mixed carbonate-evaporite-siliciclastic sequence of Gachal formation is made up of three third-order depositional sequences, separated from each other by Type 1 sequence boundary (SB1). Siliciclastic and evaporite deposits include LST system tract, whereas carbonate microfacies involve TST and HST system tracts, separated from each other by MFS. The depositional sequences identified in Gachal formation point to the Lower Carboniferous age, conforming to upper Kaskaskia supersequence. The upper erosional boundary between Gachal and Chili formations complies with the global-scale sea level fall.展开更多
Learning modality-fused representations and processing unaligned multimodal sequences are meaningful and challenging in multimodal emotion recognition.Existing approaches use directional pairwise attention or a messag...Learning modality-fused representations and processing unaligned multimodal sequences are meaningful and challenging in multimodal emotion recognition.Existing approaches use directional pairwise attention or a message hub to fuse language,visual,and audio modalities.However,these fusion methods are often quadratic in complexity with respect to the modal sequence length,bring redundant information and are not efficient.In this paper,we propose an efficient neural network to learn modality-fused representations with CB-Transformer(LMR-CBT)for multimodal emotion recognition from unaligned multi-modal sequences.Specifically,we first perform feature extraction for the three modalities respectively to obtain the local structure of the sequences.Then,we design an innovative asymmetric transformer with cross-modal blocks(CB-Transformer)that enables complementary learning of different modalities,mainly divided into local temporal learning,cross-modal feature fusion and global self-attention representations.In addition,we splice the fused features with the original features to classify the emotions of the sequences.Finally,we conduct word-aligned and unaligned experiments on three challenging datasets,IEMOCAP,CMU-MOSI,and CMU-MOSEI.The experimental results show the superiority and efficiency of our proposed method in both settings.Compared with the mainstream methods,our approach reaches the state-of-the-art with a minimum number of parameters.展开更多
基金supported by the Yayasan Universiti Teknologi PETRONAS Grants,YUTP-PRG(015PBC-027)YUTP-FRG(015LC0-311),Hilmi Hasan,www.utp.edu.my.
文摘Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.
文摘This research is focused on the analysis of the sequence stratigraphic units of F3 Block,within a wave-dominated delta of Plio–Pleistocene age.Three wells of F3 block and a 3D seismic data,are utilized in this research.The conventional techniques of 3D seismic interpretation were utilized to mark the 11 surfaces on the seismic section.Integration of seismic sequence stratigraphic interpretation,using well logs,and subsequent 3D geostatistical modeling,using seismic data,aided to evaluate the shallow hydrocarbon traps.The resulting models were obtained using System Tract and Facies models,which were generated by using sequential stimulation method and their variograms made by spherical method,moreover,these models are validated via histograms.The CDF curve generated from upscaling of well logs using geometric method,shows a good relation with less percentage of errors(1 to 2 for Facies and 3 to 4 for System Tract models)between upscaled and raw data that complements the resulted models.These approaches help us to delineate the best possible reservoir,lateral extent of system tracts(LST and/or HST)in the respective surface,and distribution of sand and shale in the delta.The clinoform break points alteration observed on seismic sections,also validates the sequence stratigraphic interpretation.The GR log-based Facies model and sequence stratigraphy-based System Tract model of SU-04-2 showed the reservoir characteristics,presence of sand bodies and majorly LST,respectively,mainly adjacent to the main fault of the studied area.Moreover,on the seismic section,SU-04-2 exhibits the presence of gas pockets at the same location that also complements the generated Facies and System Tract models.The generated models can be utilized for any similar kind of study and for the further research in the F3 block reservoir characterization.
基金Project(2008ZX05004-004)supported by the State Key Scientific Research Programs,ChinaProject(SZD0414)supported by the Sichuan Province Key Discipline Construction Project,ChinaProject(KZCX2-YW-Q05-01)supported by the Chinese Academy of Sciences Innovation Engineering Directional Project
文摘In order to reveal the relationship between the penecontemporaneous karstification and sedimentary microtopography in sequence stratigraphy,the sequence stratigraphic framework of Lianglitage formation in Upper Ordovician is studied according to the well drilling,logging,geophysical data,detailed observations of core and the paleontology.The Lianglitage formation belongs to the sequence Ⅳ of Ordovician.The second member of Lianglitage formation is prograde sedimentation in highstand systems tract,and is favorable for developing reef flat.The development scale and thickness of reef flat are controlled by the variation of secondary sea level.The types and characteristics of karst in the highstand systems tract show that the late highstand systems tract is dissolved and cemented by the meteoric fresh water and mixed water.Penecontemporaneous karstification is developed at the top of parasequence and high place of geomorphology.Atmospheric diagenetic lens is formed.The developing regulations and controlling factors of penecontemporaneous karstification can provide new clues to the prediction and exploration of favorable reservoir in this area.
基金the National Natural Science Foundation of China(No.41672149 and No.41672146)the Key Project of the Natural Science Foundation of China(No.41530314)+3 种基金the Application Research Plan of Key Scientific Research Projects in Colleges and Universities of Henan Province(20B610006)Scientific Research Foundation of the Shandong Provincial Key Laboratory of Depositional Mineralization&Sedimentary Mineralsthe Shandong University of Science and Technology(DMSM2017012)the National Science and Technology Major Project(2016ZX05044-002).
文摘Multiple coal seams and interbedded rock assemblages formed in vertical progression due to the influence of multiple stages of sea level transgressions.Based on mercury injection experiment,low temperature liquid nitrogen experiment,porosity and permeability experiment and breakthrough pressure experiment,the vertical variation characteristics of coal-bearing strata in Gujiao block are explained in detail.The results of the mercury injection and low temperature liquid nitrogen experiments show that the pore structure characteristics fluctuate with increasing depth in the strata,with fewer micropores followed by transition pores.The BET specific surface area and average pore diameter of the Shanxi Formation are generally larger than those of the Taiyuan Formation.Due to the continuous cyclic sequence stratigraphy changes,the porosity,permeability,breakthrough pressure and breakthrough time of the samples show a certain cyclicity.Within the same sequence,the porosity is larger,and the permeability is smaller near the maximum flooding surface.Although the permeability of the sandstone samples is higher,the porosity is lower,and the breakthrough pressure and breakthrough times are greater.The strata in the study area formed in an oxidized environment that was affected by freshwater,and the pore structure of different lithologies is quite different.After the formation of sandstone,the intergranular pores generally underwent filling with secondary quartz,clay minerals and organic matter,resulting in low porosity and permeability.
基金Project(60873230) supported by the National Natural Science Foundation of China
文摘To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.
文摘Permian rocks in Kalmard block are recognized with Khan Group, enjoying various characteristics in different outcrops. This group is made up of three informal formations, namely Chili, Sartakht and Hermez. Middle Permian deposits (Sartakht formation) are composed chiefly of sandstone and carbonate rocks. This formation is composed of 58.6 m sandstone and dolomitic limestone in the Bakhshi section. Lower Permian carbonate deposits (Chili formation) unconformably underlie this formation while lateritic paleosols of upper Permian (Hermez formation) are depicted overlying an erosional unconformity above this formation. According to lithologic and microscopic investigations, the deposits of Sartakht formation can be divided into 2 siliciclastic petrofacies and 12 carbonate microfacies. Field observations, along with microscopic examinations, have resulted in identifying tidal flat, lagoon, shoal and open marine environments in the rocks of the studied formation. Vertical changes of microfacies and depth variation curve point to the high thickness of the microfacies of lagoon and shoal environments and low thickness of the microfacies of tidal flat and open marine environments. The carbonate-siliciclastic sequence of Sartakht formation is made up of a third-order depositional sequence, separated from carbonate depositions of lower Permian (Chili formation) and lateritic paleosols of upper Permian by type 1 sequence boundary (SB1). Siliciclastic deposits include LST system tract, and carbonate microfacies involve TST and HST system tracts, separated from each other by MFS. Sartakht formation rocks in Bakhshi section are deposited in a low-angle homoclinal ramp, mostly in the inner ramp, located in the south of Paleotethys Ocean. The depositional sequence identified in Sartakht formation points to the age of middle Permian, conforming to middle Absaroka II supersequence. The upper erosional boundary between Sartakht and Hermez formations conforms to the global-scale sea level fall.
文摘Deposits of Lower Carboniferous rocks in Kalmard block are recognized by Gachal informal formation, showing various characteristics in different outcrops. Lower Carboniferous deposits (Gachal formation) are composed chiefly of carbonate, evaporite and siliciclastic rocks. This formation is composed of 198 m sandstone, limestone and dolomite as well as a small amount of shale, marl and gypsum in the Madbeiki section. This formation unconformably underlies Precambrian metamorphic deposits (Kalmard formation) while lateritic soils of lower Permian (Chili formation) are depicted overlying an erosional unconformity above this formation. According to lithologic and microscopic investigations, the deposits of Gachal formation can be divided into 1 siliciclastic petrofacies, 1 evaporite microfacies and 16 carbonate microfacies. Field observations, along with microscopic examinations, have resulted in identifying tidal flat, lagoon, shoal and open marine environments in the rocks of the studied formation. Vertical changes of microfacies and depth variation curve indicate the high thickness of the microfacies of tidal flat, lagoon and shoal environments and low thickness of the microfacies of open marine environment. The carbonate-evaporite-siliciclastic sequence of Gachal formation is made up of three third-order depositional sequence, separated each other by type 1 sequence boundary (SB1). Siliciclastic and evaporite deposits include LST system tract, and carbonate microfacies involve TST and HST system tracts, separated from each other by MFS. Gachal formation rocks in Madbeiki section are deposited in a low-angle homoclinal ramp, mostly in the inner ramp, located in the southern Paleotethys Ocean. The depositional sequence identified in Gachal formation points to the age of Lower Carboniferous, conforming to upper Kaskaskia super sequence. The upper erosional boundary between Gachal and Chili formations conform to the global-scale sea level fall.
基金Supported by National Natural Science Foundation of China (69972042),Natural Science Fund of Hebei Provice(599245)and Science Foundation of Yanshan University
文摘A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP) is proposed. A new class of block design-Difference Family Pair (DFP) is also proposed.The relationship between PCSP and DFP, the properties and existing conditions of PCSP and the recursive constructions for PCSP are given.
文摘The quantitative description of the sequence structure of emulsion-processed SBR and solution-processed SBR (by lithium catalyst)was carried out based on their spectral data Of ^(13)C-NMR.The calculating formulae which could be used to obtain diad concentration from the peak intensifies of carbon spectra, average block length, average number of block, and the microstructure composition of the molecular chain were derived. The quantitative result showed that on the molecular chain styrene unit had the tendency to attach to trans-1,4 butadiene unit. The calculated result of the microstructure was in good agreement with that obtained through IR measurement.
基金a part of project of the Hormozgan University and two master theses of the senior author, which is supported by the Department of Geology at Hormozgan University of Bandar Abbas, Iran
文摘This study is focused on sedimentary environments, facies distribution, and sequence stratigraphy. The facies and sequence stratigraphic analyses of the Bahram Formation(middleelate Devonian) in southcentral Iran are based on two measured stratigraphic sections in the southern Tabas block. The Bahram Formation overlies red sandstones Padeha Formation in sections Hutk and Sardar and is overlain by Carboniferous carbonate deposits of Hutk Formation paraconformably, with a thickness of 354 and386 m respectively. Mixed siliciclastic and carbonate sediments are present in this succession. The field observations and laboratory studies were used to identify 14 micro/petrofacies, which can be grouped into 5 depositional environments: shore, tidal flat, lagoon, shoal and shallow open marine. A mixed carbonate-detrital shallow shelf is suggested for the depositional environment of the Bahram Formation which deepens to the east(Sardar section) and thins in southern locations(Hutk section). Three 3rdorder cyclic siliciclastic and carbonate sequences in the Bahram Formation and one sequence shared with the overlying joint with Hutk Formation are identified, on the basis of shallowing upward patterns in the micro/pertofacies.
文摘In-loop filtering significantly helps detect and remove blocking artifacts across block boundaries in low bitrate coded High Efficiency Video Coding(HEVC)frames and improves its subjective visual quality in multimedia services over communication networks.However,on faster processing of the complex videos at a low bitrate,some visible artifacts considerably degrade the picture quality.In this paper,we proposed a four-step fuzzy based adaptive deblocking filter selection technique.The proposed method removes the quantization noise,blocking artifacts and corner outliers efficiently for HEVC coded videos even at low bit-rate.We have considered Y(luma),U(chromablue),and V(chroma-red)components parallelly.Finally,we have developed a fuzzy system to detect blocking artifacts and use adaptive filters as per requirement in all four quadrants,namely up 45◦,down 45◦,up 135◦,and down 135◦across horizontal and vertical block boundaries.In this context,experimentation is done on a wide variety of videos.An objective and subjective analysis is carried out with MATLAB software and Human Visual System(HVS).The proposed method substantially outperforms existing postprocessing deblocking techniques in terms of YPSNR and BD_rate.In the proposed method,we achieved 0.32–0.97 dB values of YPSNR.Our method achieved a BD_rate of+1.69%for the luma component,−0.18%(U)and−1.99%(V)for chroma components,respectively,with respect to the stateof-the-art methods.The proposed method proves to have low computational complexity and has better parallel processing,hence suitable for a real-time system in the near future.
基金the Shandong Foundation of Sciences(No.Y2000D04) the National Key Basic Research Program from the Ministry of Science and Technology of China(No.G19990437).
文摘The 5’-end of the mitochondrial control region sequences of three flatfishes (Pleuronectiformes: Pleuronectidae) were amplified and sequenced. These sequences were compared with those of other three Pleuronectids species retrieved from GenBank. A phylogenetic tree was constructed based on the partial control region sequences. The results of phyloge- netic analysis are consistent with those of conventional systematics. Compared to previous studies, the structure of the 5’-end of mitochondrial control region was analyzed. The terminal associated sequence motif and its complementary motif were i- dentified at the 5’-end of the sequences. A conserved sequence block, named as CM5’d, was identified in the 5’-end of con- trol region sequences in all Pleuronectids. Another central conserved sequence block, named as CSB-F, was detected in the central conserved blocks.
文摘The deposits of Lower Carboniferous rocks in Kalmard Block are characterized by Gachal informal formation, showing various properties in different outcrops. These deposits (in Gachal formation) are composed chiefly of carbonate, evaporite and siliciclastic rocks. This formation commonly hosts 190 m sandstone, limestone, dolomitic limestone and dolomite as well as a small amount of shale and marl in the Bakhshi section. It unconformably underlies Devonian deposits (Rahdar formation) while lateritic soils of lower Permian (Chili formation) are depicted overlying an erosional unconformity above this formation. The mixed carbonate-evaporite-siliciclastic sequence of Gachal formation is made up of three third-order depositional sequences, separated from each other by Type 1 sequence boundary (SB1). Siliciclastic and evaporite deposits include LST system tract, whereas carbonate microfacies involve TST and HST system tracts, separated from each other by MFS. The depositional sequences identified in Gachal formation point to the Lower Carboniferous age, conforming to upper Kaskaskia supersequence. The upper erosional boundary between Gachal and Chili formations complies with the global-scale sea level fall.
基金National Natural Science Foundation of China(Grant No.72293583).
文摘Learning modality-fused representations and processing unaligned multimodal sequences are meaningful and challenging in multimodal emotion recognition.Existing approaches use directional pairwise attention or a message hub to fuse language,visual,and audio modalities.However,these fusion methods are often quadratic in complexity with respect to the modal sequence length,bring redundant information and are not efficient.In this paper,we propose an efficient neural network to learn modality-fused representations with CB-Transformer(LMR-CBT)for multimodal emotion recognition from unaligned multi-modal sequences.Specifically,we first perform feature extraction for the three modalities respectively to obtain the local structure of the sequences.Then,we design an innovative asymmetric transformer with cross-modal blocks(CB-Transformer)that enables complementary learning of different modalities,mainly divided into local temporal learning,cross-modal feature fusion and global self-attention representations.In addition,we splice the fused features with the original features to classify the emotions of the sequences.Finally,we conduct word-aligned and unaligned experiments on three challenging datasets,IEMOCAP,CMU-MOSI,and CMU-MOSEI.The experimental results show the superiority and efficiency of our proposed method in both settings.Compared with the mainstream methods,our approach reaches the state-of-the-art with a minimum number of parameters.