This paper deals with indirect effects of major impacting throughout the Early Paleozoic resp. with those of super plume activity during the Early Cretaceous, both applied to the siliciclastic series of Jordan deposit...This paper deals with indirect effects of major impacting throughout the Early Paleozoic resp. with those of super plume activity during the Early Cretaceous, both applied to the siliciclastic series of Jordan deposited on the Arabian Platform, Arabian Plate. Its focus is mainly directed on gases released by both processes (CO2, SO2, NOx, HCl, HF) and the relating acids, challenged by experiments and microscopic analysis of grain mounts and thin sections that reveal chemical instability of quartz and ultrastable heavy minerals (i.e. tourmaline) under high acidity (pH °C - 90°C). According to Lopatin’s Time/Temperatur-Index the Lower Cambrian reached the onset of hydrocarbon generation (liquid window) during the Lower Early Cretaceous. Unstable heavy minerals (apatite, garnet, hornblende, epidote, zoisite/clinozoisite) are generally absent in quartz arenites while in arkosic sandstones of marine environment carbonate cement and primary clay minerals (illite) provide conservation. As known since the eighties, the K/T-event’s indirect effects had global influence on Earth’s surface sediments and atmospheric chemistry by wildfires, hot whirl storms, acidic “sturz rain”, dust, soot, darkness, loss of photosynthesis, toxic metals, gases and relating acids. All of them are here concerned and applied to major impacting throughout the Early Paleozoic using the impact data of Price (2001);while superplume volcanism during Cretaceous led to the opening of the South Atlantic accompanied by the cyclic outflow of the Para?a/Etendeka Flood Basalts and relating gases in a gigantic scale (137 - 127 Ma). Assuming that the gases cause similar global effects on Earth’s surface sediments, an according result may be expected in form of quartz arenites and their sequence-analytical patterns (cyclic SBs, MFSs).*展开更多
Based on profound sequence-analytical data of the early Palaeozoic sedimentary systems of Jordan, Arabian Plate, a correlation attempt is proposed with regard to possible major impact events after Price [10]. His meth...Based on profound sequence-analytical data of the early Palaeozoic sedimentary systems of Jordan, Arabian Plate, a correlation attempt is proposed with regard to possible major impact events after Price [10]. His methodological concept tells that abrupt 441 Ma. Referring to the fact that major impacts may trigger, respectively influence, exogenic and endogenic processes on an over-regional, even global, extent, this paper put the “sensitive” geological setting of Jordan at the Arabian Platform’s margin into focus. That mainly concerns the early Palaeozoic coastlines as to sea level change as well as the Jordan Valley Rift as being possibly to susceptible for tectonic re-activation changes of both direction and speed of plate motions would indicate such convulsive processes as occurred on: 550 Ma, 526.5 Ma, 514 Ma, 502 Ma, 456/455.4 Ma, and following triggering of magmatism at the Precambrian/Cambrian boundary. The following phenomena are taken into account: Faulting and magmatism triggered along the Jordan Valley Rift (Wadi Araba) in connection with the Pan-African Orogeny, anoxic sediments, temporary high detrital input onto the adjoining stable platform from Gondwana hinterlands, and significant chemical weathering in the Gondwana source areas by intensive acid (nitric) rain directing mineral content variation in the “Nubian Sandstones” (e.g. feldspar, kaolinite/dickite, tourmaline).展开更多
文摘This paper deals with indirect effects of major impacting throughout the Early Paleozoic resp. with those of super plume activity during the Early Cretaceous, both applied to the siliciclastic series of Jordan deposited on the Arabian Platform, Arabian Plate. Its focus is mainly directed on gases released by both processes (CO2, SO2, NOx, HCl, HF) and the relating acids, challenged by experiments and microscopic analysis of grain mounts and thin sections that reveal chemical instability of quartz and ultrastable heavy minerals (i.e. tourmaline) under high acidity (pH °C - 90°C). According to Lopatin’s Time/Temperatur-Index the Lower Cambrian reached the onset of hydrocarbon generation (liquid window) during the Lower Early Cretaceous. Unstable heavy minerals (apatite, garnet, hornblende, epidote, zoisite/clinozoisite) are generally absent in quartz arenites while in arkosic sandstones of marine environment carbonate cement and primary clay minerals (illite) provide conservation. As known since the eighties, the K/T-event’s indirect effects had global influence on Earth’s surface sediments and atmospheric chemistry by wildfires, hot whirl storms, acidic “sturz rain”, dust, soot, darkness, loss of photosynthesis, toxic metals, gases and relating acids. All of them are here concerned and applied to major impacting throughout the Early Paleozoic using the impact data of Price (2001);while superplume volcanism during Cretaceous led to the opening of the South Atlantic accompanied by the cyclic outflow of the Para?a/Etendeka Flood Basalts and relating gases in a gigantic scale (137 - 127 Ma). Assuming that the gases cause similar global effects on Earth’s surface sediments, an according result may be expected in form of quartz arenites and their sequence-analytical patterns (cyclic SBs, MFSs).*
文摘Based on profound sequence-analytical data of the early Palaeozoic sedimentary systems of Jordan, Arabian Plate, a correlation attempt is proposed with regard to possible major impact events after Price [10]. His methodological concept tells that abrupt 441 Ma. Referring to the fact that major impacts may trigger, respectively influence, exogenic and endogenic processes on an over-regional, even global, extent, this paper put the “sensitive” geological setting of Jordan at the Arabian Platform’s margin into focus. That mainly concerns the early Palaeozoic coastlines as to sea level change as well as the Jordan Valley Rift as being possibly to susceptible for tectonic re-activation changes of both direction and speed of plate motions would indicate such convulsive processes as occurred on: 550 Ma, 526.5 Ma, 514 Ma, 502 Ma, 456/455.4 Ma, and following triggering of magmatism at the Precambrian/Cambrian boundary. The following phenomena are taken into account: Faulting and magmatism triggered along the Jordan Valley Rift (Wadi Araba) in connection with the Pan-African Orogeny, anoxic sediments, temporary high detrital input onto the adjoining stable platform from Gondwana hinterlands, and significant chemical weathering in the Gondwana source areas by intensive acid (nitric) rain directing mineral content variation in the “Nubian Sandstones” (e.g. feldspar, kaolinite/dickite, tourmaline).