Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor(SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules...Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor(SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength. Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rod-shaped and coccoid bacteria were the dominant microorganisms.展开更多
The present study evaluated the potential of white-rot fungal strain Coriolus versicolor to decolorize five structurally different dyes in sequential batch reactors under optimized conditions. The experiments were run...The present study evaluated the potential of white-rot fungal strain Coriolus versicolor to decolorize five structurally different dyes in sequential batch reactors under optimized conditions. The experiments were run continuously for seven cycles of 8 d each. High decolorizing activity was observed even during the repeated reuse of the fungus, especially when the old medium was replaced with fresh medium after every cycle. Biodegradation was the dominating factor as the fungus was able to produce the enzyme laccase mainly, to mineralize synthetic dyes. The nutrients and composition of the medium played important roles in sustaining the decolorisation potential of the fungus. Corncob was found be an easy and cheap substitute for carbon source for the fungus. Glucose consumption by the fungus was in accordance to its decolorisation activity and chemical oxygen demand (COD) reduction.展开更多
Lysozyme reaction was developed as a novel technique for minimizing the amount of excess sludge in the sequential batch reactor(SBR).In the present work,excess sludge taken from a SBR system was treated by lysozyme re...Lysozyme reaction was developed as a novel technique for minimizing the amount of excess sludge in the sequential batch reactor(SBR).In the present work,excess sludge taken from a SBR system was treated by lysozyme reaction and then returned to the reactor.The quality of the effluent water and characteristics of the activated sludge in the SBR were analyzed to determine the effectiveness of the reduction process.The results show that excess sludge production could be reduced to almost 100%in the first30 d of operation and could be reduced to further by 40%in the succeeding 20 d or so.In these time periods,the average removal efficiencies of the chemical oxygen demand and total nitrogen are 87.38%and 52.78%,respectively,whereas the average total phosphorous in the effluent is nearly 17.18%greater than that of the effluent of the reference system.After 50 d of operation,the sludge floc size is in the range of 20 to 80μm,which was smaller than the size prior to the start of the hydrolysis and the ratio of mixed liquor volatile suspended solids/mixed liquor suspended solids increases from 86%to 90%.展开更多
Simultaneous nitrification denitrification (SND) is a well-established phenomenon in biological nutrient removal activated sludge systems. Study at a municipal wastewater treatment facility sought to determine nitroge...Simultaneous nitrification denitrification (SND) is a well-established phenomenon in biological nutrient removal activated sludge systems. Study at a municipal wastewater treatment facility sought to determine nitrogen removal effectiveness within a full-scale sequential batch reactor (SBR) system utilizing SND in conjunction with traditional nitrogen removal. In addition to characterizing extent of SND, the research examined the ability of SND to meet state-based effluent water quality standards. At the selected facility, the average SND efficiency during a two-month sampling period was 52.8%, paralleling results from similar SBR municipal wastewater systems. The observed SBR system had removal efficiencies > 99% for the influent to effluent -N concentrations. The SND process also resulted in average NO<sub>3</sub>-NO<sub>2</sub>-N concentration that was 82% lower than the theoretical concentration under comparable circumstances. Overall, nitrogen removal for this SBR system was >99% which typified results in other SND systems, but at a higher Total Nitrogen removal rate.展开更多
文摘Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor(SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength. Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rod-shaped and coccoid bacteria were the dominant microorganisms.
基金the funding agencies, Department of Science and Technology, India and International Foundation for Science Sweden, for providing the financial support to conduct the studies reported in this article
文摘The present study evaluated the potential of white-rot fungal strain Coriolus versicolor to decolorize five structurally different dyes in sequential batch reactors under optimized conditions. The experiments were run continuously for seven cycles of 8 d each. High decolorizing activity was observed even during the repeated reuse of the fungus, especially when the old medium was replaced with fresh medium after every cycle. Biodegradation was the dominating factor as the fungus was able to produce the enzyme laccase mainly, to mineralize synthetic dyes. The nutrients and composition of the medium played important roles in sustaining the decolorisation potential of the fungus. Corncob was found be an easy and cheap substitute for carbon source for the fungus. Glucose consumption by the fungus was in accordance to its decolorisation activity and chemical oxygen demand (COD) reduction.
基金Project(51078130)supported by the National Natural Science Foundation of ChinaProject(10C0419)supported by the the Education Department of Hunan Province,China
文摘Lysozyme reaction was developed as a novel technique for minimizing the amount of excess sludge in the sequential batch reactor(SBR).In the present work,excess sludge taken from a SBR system was treated by lysozyme reaction and then returned to the reactor.The quality of the effluent water and characteristics of the activated sludge in the SBR were analyzed to determine the effectiveness of the reduction process.The results show that excess sludge production could be reduced to almost 100%in the first30 d of operation and could be reduced to further by 40%in the succeeding 20 d or so.In these time periods,the average removal efficiencies of the chemical oxygen demand and total nitrogen are 87.38%and 52.78%,respectively,whereas the average total phosphorous in the effluent is nearly 17.18%greater than that of the effluent of the reference system.After 50 d of operation,the sludge floc size is in the range of 20 to 80μm,which was smaller than the size prior to the start of the hydrolysis and the ratio of mixed liquor volatile suspended solids/mixed liquor suspended solids increases from 86%to 90%.
文摘Simultaneous nitrification denitrification (SND) is a well-established phenomenon in biological nutrient removal activated sludge systems. Study at a municipal wastewater treatment facility sought to determine nitrogen removal effectiveness within a full-scale sequential batch reactor (SBR) system utilizing SND in conjunction with traditional nitrogen removal. In addition to characterizing extent of SND, the research examined the ability of SND to meet state-based effluent water quality standards. At the selected facility, the average SND efficiency during a two-month sampling period was 52.8%, paralleling results from similar SBR municipal wastewater systems. The observed SBR system had removal efficiencies > 99% for the influent to effluent -N concentrations. The SND process also resulted in average NO<sub>3</sub>-NO<sub>2</sub>-N concentration that was 82% lower than the theoretical concentration under comparable circumstances. Overall, nitrogen removal for this SBR system was >99% which typified results in other SND systems, but at a higher Total Nitrogen removal rate.