期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Internal structural optimization of hollow fan blade based on sequential quadratic programming algorithm 被引量:1
1
作者 YANG Jian-qiu WANG Yan-rong 《航空动力学报》 EI CAS CSCD 北大核心 2011年第4期787-793,共7页
Several structural design parameters for the description of the geometric features of a hollow fan blade were determined.A structural design optimization model of a hollow fan blade which based on the strength constra... Several structural design parameters for the description of the geometric features of a hollow fan blade were determined.A structural design optimization model of a hollow fan blade which based on the strength constraint and minimum mass was established based on the finite element method through these parameters.Then,the sequential quadratic programming algorithm was employed to search the optimal solutions.Several groups of value for initial design variables were chosen,for the purpose of not only finding much more local optimal results but also analyzing which discipline that the variables according to could be benefit for the convergence and robustness.Response surface method and Monte Carlo simulations were used to analyze whether the objective function and constraint function are sensitive to the variation of variables or not.Then the robust results could be found among a group of different local optimal solutions. 展开更多
关键词 hollow fan blade structural optimization sequential quadratic algorithm finite element method Monte Carlo simulations
原文传递
Shape-sizing nested optimization of deployable structures using SQP 被引量:1
2
作者 戴璐 关富玲 《Journal of Central South University》 SCIE EI CAS 2014年第7期2915-2920,共6页
The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by... The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs. 展开更多
关键词 deployable structures OPTIMIZATION minimum mass dynamic constraints SQP(sequential quadratic programming) algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部