期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Eliminating shrinkage defects and improving mechanical performance of large thin-walled ZL205A alloy castings by coupling travelling magnetic fields with sequential solidification 被引量:6
1
作者 Lei LUO Hong-ying XIA +5 位作者 Liang-shun LUO Yan-qing SU Chao-jun CAI Liang WANG Jing-jie GUO Heng-zhi FU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期865-877,共13页
ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performa... ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture. 展开更多
关键词 ZL205A alloys large thin-walled alloy castings travelling magnetic fields sequential solidification shrinkage defects mechanical performance
下载PDF
Reducing porosity and optimizing performance for Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification 被引量:2
2
作者 Lei Luo Liangshun Luo +5 位作者 Yanqing Su Lin Su Liang Wang Ruirun Chen Jingjie Guo Hengzhi Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第20期1-14,共14页
Porosity is a major casting defect in alloys with large solidification intervals due to the disordered microstructure and broad mushy zones,which decreases badly the mechanical performance.Hence,finding ways to effect... Porosity is a major casting defect in alloys with large solidification intervals due to the disordered microstructure and broad mushy zones,which decreases badly the mechanical performance.Hence,finding ways to effectively reduce the porosity,further to optimize microstructure and mechanical performance is of great significance.In this regard,the Al-Cu-based alloys with large solidification intervals are continuously processed by coupling the travelling magnetic fields(TMF)with sequential solidification.Additionally,experiments combined with simulations are utilized to comprehensively analyze the mechanism of TMF on the reduction in porosity,including shrinkage porosity and gas porosity,from different perspectives.Current findings determine that downward TMF can effectually optimize together the porosity,microstructure and performance,by inducing the strong long-range directional melt flows,stabilizing the mushy zones,and optimizing the feeding channels and exhaust paths,as well as increasing the driving force of degassing process.Eventually,downward TMF can increase the ultimate tensile strength,yield strength,elongation and hardness from 175.2 MPa,87.5 MPa,13.3%and 80.2 kg mm^(-2) without TMF to 218.6 MPa,109.3 MPa,15.6%and 95.5 kg mm^(-2),while reduce the total porosity from0.95%to 0.18%.However,Up-TMF exerts negative effects on the optimization of porosity,microstructure and performance due to the opposite strong directional magnetic force and melt flows.Overall,our study provides an effective way to optimize together the porosity,microstructure and mechanical performance,and reveals their relationship,as well as details the relevant mechanisms of TMF on the porosity reduction from different perspectives. 展开更多
关键词 POROSITY Large solidification intervals Travelling magnetic fields sequential solidification Al-Cu-based alloys
原文传递
Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification 被引量:2
3
作者 Lei Luo Liangshun Luo +6 位作者 Robert O.Ritchie Yanqing Su Binbin Wang Liang Wang Ruirun Chen Jingjie Guo Hengzhi Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第2期100-113,共14页
Alloys with large solidification intervals are prone to issues from the disordered growth and defect formation;accordingly, finding ways to effectively optimize the microstructure, further to improve the mechanical pr... Alloys with large solidification intervals are prone to issues from the disordered growth and defect formation;accordingly, finding ways to effectively optimize the microstructure, further to improve the mechanical properties is of great importance. To this end, we couple travelling magnetic fields with sequential solidification to continuously regulate the mushy zones of Al-Cu-based alloys with large solidification intervals. Moreover, we combine experiments with simulations to comprehensively analyze the mechanisms on the optimization of microstructure and properties. Our results indicate that only downward travelling magnetic fields coupled with sequential solidification can obtain the refined and uniform microstructure, and promote the growth of matrix phase -Al along the direction of temperature gradient.Additionally, the secondary dendrites and precipitates are reduced, while the solute partition coefficient and solute solid-solubility are raised. Ultimately, downward travelling magnetic fields can increase the ultimate tensile strength, yield strength, elongation and hardness from 196.2 MPa, 101.2 MPa, 14.5 % and85.1 kg mm-2 without travelling magnetic fields to 224.1 MPa, 114.5 MPa, 17.1 % and 102.1 kg mm-2,and improve the ductility of alloys. However, upward travelling magnetic fields have the adverse effects on microstructural evolution, and lead to a reduction in the performance and ductility. Our findings demonstrate that long-range directional circular flows generated by travelling magnetic fields directionally alter the transformation and redistribution of solutes and temperature, which finally influences the solidification behavior and performance. Overall, our research present not only an innovative method to optimize the microstructures and mechanical properties for alloys with large solidification intervals,but also a detailed mechanism of travelling magnetic fields on this optimization during the sequential solidification. 展开更多
关键词 Large solidification intervals Travelling magnetic fields sequential solidification Mushy zones Al-Cu-based alloys
原文传递
A grouting simulation method for quick-setting slurry in karst conduit:The sequential flow and solidification method 被引量:5
4
作者 Zhenhao Xu Dongdong Pan +3 位作者 Shucai Li Yichi Zhang Zehua Bu Jie Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期423-435,共13页
It is difficult to temporally and spatially track and characterize the slurry viscosity in flowing water during grouting simulation.In this study,a sequential flow and solidification(SFS)method considering the spatial... It is difficult to temporally and spatially track and characterize the slurry viscosity in flowing water during grouting simulation.In this study,a sequential flow and solidification(SFS)method considering the spatial-temporal evolution of slurry viscosity in flowing water in karst conduit is proposed.First,a time-dependent model for the threshold function of slurry viscosity is established.During the grouting process,the spatial-temporal evolution of slurry viscosity is revealed by tracking the diffusion behavior of the slurry injected at different times.This method is capable of describing the gradual solidification process of the slurry during grouting.Furthermore,a physical model of grouting in a karst conduit is developed.Second,the effectiveness of the SFS method in grouting simulation is verified by the experiment of grouting conduit in flowing water.The SFS method enables real-time monitoring of fluid velocity and pressure during grouting in flowing water and provides a feasible calculation method for revealing the grouting plugging mechanism in complex karst conduits at different engineering scales.In addition,it can be used to guide the design of grouting tests in flowing water,improve cost efficiency,and provide theoretical basis for optimizing grouting design and slurry selection. 展开更多
关键词 Karst conduit sequential flow and solidification(SFS) Quick-setting slurry Grouting simulation method Grouting in flowing water
下载PDF
Prediction and improvement of shrinkage porosity in TiAl based alloy 被引量:5
5
作者 Gao Yong Zhang Lijing +1 位作者 Gao Wenli Zhang HU 《China Foundry》 SCIE CAS 2011年第1期19-24,共6页
The present research has developed a novel investment casting process for ingot production of TiAl alloys through forming a small vertical temperature gradient on the mold.The advantage of this process is to guarantee... The present research has developed a novel investment casting process for ingot production of TiAl alloys through forming a small vertical temperature gradient on the mold.The advantage of this process is to guarantee that the castings solidify sequentially from bottom to top.The analysis of numerical simulation and experimental results showed that the shrinkage porosity of Ti-47Al-2Cr-2Nb alloy was significantly improved by forming a vertical temperature gradient of 3 oC/mm on the mold,while the increase of pouring temperature and pressure on the molten alloys had no apparent effect on the reduction of shrinkage porosity.The critical value of the Niyama criterion that can reliably predict the shrinkage porosity in Ti-47Al-2Cr-2Nb alloy was identified by the comparison of experimental and simulated results. 展开更多
关键词 TiAl-based alloy shrinkage porosity numerical simulation temperature gradient sequential solidification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部