This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix ...This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.展开更多
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’...To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.展开更多
In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential d...In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.展开更多
In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 tha...In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.展开更多
Existence of positive solution is established for boundary value problems of nonsingular for a class quasi-linear ordinary differential equation on the semi-infinite interval. The results are obtained by using the non...Existence of positive solution is established for boundary value problems of nonsingular for a class quasi-linear ordinary differential equation on the semi-infinite interval. The results are obtained by using the nonlinear alternative of Leray-Schauder method.展开更多
This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the ps...This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the pseudo state and the nonzero initial conditions of the input.Secondly,in order to characterise the dynamics of the LNHMDEs correctly,some important concepts such as the state,slow state(smooth state)and fast state(impulsive state)are generalized to the LNHMDE case and the solution of the LNHMDEs is separated into the smooth(slow)response and the fast(implusive)response.As a third result,a new characterization of the impulsive free initial conditions of the LNHMDEs is given.展开更多
This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which ...This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which will be stated later.The periodicity problem has been one of main topics in the qualitative theory of ordinary展开更多
By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differenti...By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].展开更多
In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational c...In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.展开更多
In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution n...In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of C-t x C-x(n).展开更多
The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory ...The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.展开更多
In this paper, we propose to replace the Chebyshev series used in pseudospectral methods with the equivalent Chebyshev economized power series that can be evaluated more rapidly. We keep the rest of the implementation...In this paper, we propose to replace the Chebyshev series used in pseudospectral methods with the equivalent Chebyshev economized power series that can be evaluated more rapidly. We keep the rest of the implementation the same as the spectral method so that there is no new mathematical principle involved. We show by numerical examples that the new approach works well and there is indeed no significant loss of solution accuracy. The advantages of using power series also include simplicity in its formulation and implementation such that it could be used for complex systems. We investigate the important issue of collocation point selection. Our numerical results indicate that there is a clear accuracy advantage of using collocation points corresponding to roots of the Chebyshev polynomial.展开更多
In this paper, a new one-step explicit method of fourth order is derived. The new method is proved to be A-stable and L-stable, and it gives exact results when applied to the test equation y’=λy with Re(λ)【0, Also...In this paper, a new one-step explicit method of fourth order is derived. The new method is proved to be A-stable and L-stable, and it gives exact results when applied to the test equation y’=λy with Re(λ)【0, Also several numerical examples are included.展开更多
Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) ...Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.展开更多
In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part,...In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.展开更多
This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are ...This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.展开更多
This paper presents the theory and applications of a new computational technique referred to as Differential Transform Method (DTM) for solving second order linear ordinary differential equations, for both homogeneous...This paper presents the theory and applications of a new computational technique referred to as Differential Transform Method (DTM) for solving second order linear ordinary differential equations, for both homogeneous and nonhomogeneous cases. For the robustness and efficiency of the method, four examples are considered. The results indicate that the DTM is reliable and accurate when compared to the exact solutions of the solved problems.展开更多
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus...We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.展开更多
In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted,...In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted, and the results in [1 - 4] are improved and extended by means of the modified method of multiple scales.展开更多
In this article, we study on the existence of solution for a singularities of a system of nonlinear fractional differential equations (FDE). We construct a formal power series solution for our considering FDE and pr...In this article, we study on the existence of solution for a singularities of a system of nonlinear fractional differential equations (FDE). We construct a formal power series solution for our considering FDE and prove convergence of formal so- lutions under conditions. -We use the Caputo fractional differential operator and the nonlinearity depends on the fractional derivative of an unknown function.展开更多
文摘This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.
文摘To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.
文摘In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.
文摘In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.
文摘Existence of positive solution is established for boundary value problems of nonsingular for a class quasi-linear ordinary differential equation on the semi-infinite interval. The results are obtained by using the nonlinear alternative of Leray-Schauder method.
文摘This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the pseudo state and the nonzero initial conditions of the input.Secondly,in order to characterise the dynamics of the LNHMDEs correctly,some important concepts such as the state,slow state(smooth state)and fast state(impulsive state)are generalized to the LNHMDE case and the solution of the LNHMDEs is separated into the smooth(slow)response and the fast(implusive)response.As a third result,a new characterization of the impulsive free initial conditions of the LNHMDEs is given.
文摘This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which will be stated later.The periodicity problem has been one of main topics in the qualitative theory of ordinary
基金Project supported by the National Natural Science Foundation of China.
文摘By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].
文摘In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.
文摘In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of C-t x C-x(n).
基金Supported by the National Natural Science Foundation of China(11101096 )Guangdong Natural Science Foundation (S2012010010376, S201204006711)
文摘The main purpose of this article is to study the existence theories of global meromorphic solutions for some second-order linear differential equations with meromorphic coefficients, which perfect the solution theory of such equations.
文摘In this paper, we propose to replace the Chebyshev series used in pseudospectral methods with the equivalent Chebyshev economized power series that can be evaluated more rapidly. We keep the rest of the implementation the same as the spectral method so that there is no new mathematical principle involved. We show by numerical examples that the new approach works well and there is indeed no significant loss of solution accuracy. The advantages of using power series also include simplicity in its formulation and implementation such that it could be used for complex systems. We investigate the important issue of collocation point selection. Our numerical results indicate that there is a clear accuracy advantage of using collocation points corresponding to roots of the Chebyshev polynomial.
文摘In this paper, a new one-step explicit method of fourth order is derived. The new method is proved to be A-stable and L-stable, and it gives exact results when applied to the test equation y’=λy with Re(λ)【0, Also several numerical examples are included.
文摘Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.
基金Provincial Science and Technology Foundation of Guizhou
文摘In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.
文摘This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.
文摘This paper presents the theory and applications of a new computational technique referred to as Differential Transform Method (DTM) for solving second order linear ordinary differential equations, for both homogeneous and nonhomogeneous cases. For the robustness and efficiency of the method, four examples are considered. The results indicate that the DTM is reliable and accurate when compared to the exact solutions of the solved problems.
文摘We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.
基金The Project Supported by the National Natural Science Foundation of China
文摘In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted, and the results in [1 - 4] are improved and extended by means of the modified method of multiple scales.
文摘In this article, we study on the existence of solution for a singularities of a system of nonlinear fractional differential equations (FDE). We construct a formal power series solution for our considering FDE and prove convergence of formal so- lutions under conditions. -We use the Caputo fractional differential operator and the nonlinearity depends on the fractional derivative of an unknown function.