针对输入串联输出并联双有源桥(dual active bridge,DAB)变换器子模块内部参数不匹配导致的功率不平衡,以及单移相(single phase shift,SPS)控制下变换器工作效率低的问题,该文基于拓展移相(extended phase shift,EPS)控制提出一种扰动...针对输入串联输出并联双有源桥(dual active bridge,DAB)变换器子模块内部参数不匹配导致的功率不平衡,以及单移相(single phase shift,SPS)控制下变换器工作效率低的问题,该文基于拓展移相(extended phase shift,EPS)控制提出一种扰动均压(disturbance voltage sharing,DVS)控制策略。通过建立EPS控制下的电流应力解析模型,求解最优电流应力对应下的内外移相比组合。进一步,设计逐级扰动方案,通过扰动模块的外移相比,对各模块内部参数失配时的输入电压进行补偿。DVS控制策略在实现串并联模块间功率平衡的前提下,降低变换器电流应力,从而提升变换器的工作效率。此外,由于无需在每个控制环路中增设输入电压传感器,系统结构更为简化,硬件成本更低。最后,通过仿真和实验验证了所提控制策略的正确性和有效性。展开更多
高压串联谐振变换器广泛应用于电容器充电、静电除尘等系统中。然而,高压变压器寄生电容的存在,使得客观上并不存在理想的高压串联谐振变换器。定量分析了高压高频变压器的寄生电容对工作于断续谐振电流模式(discontinuous current mode...高压串联谐振变换器广泛应用于电容器充电、静电除尘等系统中。然而,高压变压器寄生电容的存在,使得客观上并不存在理想的高压串联谐振变换器。定量分析了高压高频变压器的寄生电容对工作于断续谐振电流模式(discontinuous current mode,DCM)的串联谐振变换器特性的影响,这些特性包括临界断续谐振频率、归一化输出电流和软开关。当考虑高压变压器寄生电容后,串联谐振变换器实际上已经演变为LCC串并联谐振变换器。通过对DCMLCC谐振变换器在不同工作阶段的数学分析、推导和归一化处理,得到了具有封闭形式的电路特性的表达式。通过分析发现,随着等效电压增益的增加,DCM LCC谐振变换器的正向和反向谐振过程均由两元件谐振向三元件谐振过程转变,临界断续频率升高。以图形曲线的方式给出了量化的分析结果。通过比较两类典型的控制方法可知,第二类典型控制方法具有更高的电流输出能力和能量传输效率,是一种优化的控制方法。所得分析结果可为工作于断续谐振电流模式的高压串联谐振变换器的设计提供参考,特别对电容充电和静电除尘电源具有工程应用价值。展开更多
文摘针对输入串联输出并联双有源桥(dual active bridge,DAB)变换器子模块内部参数不匹配导致的功率不平衡,以及单移相(single phase shift,SPS)控制下变换器工作效率低的问题,该文基于拓展移相(extended phase shift,EPS)控制提出一种扰动均压(disturbance voltage sharing,DVS)控制策略。通过建立EPS控制下的电流应力解析模型,求解最优电流应力对应下的内外移相比组合。进一步,设计逐级扰动方案,通过扰动模块的外移相比,对各模块内部参数失配时的输入电压进行补偿。DVS控制策略在实现串并联模块间功率平衡的前提下,降低变换器电流应力,从而提升变换器的工作效率。此外,由于无需在每个控制环路中增设输入电压传感器,系统结构更为简化,硬件成本更低。最后,通过仿真和实验验证了所提控制策略的正确性和有效性。
文摘高压串联谐振变换器广泛应用于电容器充电、静电除尘等系统中。然而,高压变压器寄生电容的存在,使得客观上并不存在理想的高压串联谐振变换器。定量分析了高压高频变压器的寄生电容对工作于断续谐振电流模式(discontinuous current mode,DCM)的串联谐振变换器特性的影响,这些特性包括临界断续谐振频率、归一化输出电流和软开关。当考虑高压变压器寄生电容后,串联谐振变换器实际上已经演变为LCC串并联谐振变换器。通过对DCMLCC谐振变换器在不同工作阶段的数学分析、推导和归一化处理,得到了具有封闭形式的电路特性的表达式。通过分析发现,随着等效电压增益的增加,DCM LCC谐振变换器的正向和反向谐振过程均由两元件谐振向三元件谐振过程转变,临界断续频率升高。以图形曲线的方式给出了量化的分析结果。通过比较两类典型的控制方法可知,第二类典型控制方法具有更高的电流输出能力和能量传输效率,是一种优化的控制方法。所得分析结果可为工作于断续谐振电流模式的高压串联谐振变换器的设计提供参考,特别对电容充电和静电除尘电源具有工程应用价值。