Objective To explore the possibility of using specific antigens for immunodiagnosis of hookworm desease in endemic area. Method Infective third stage larvae of the canine hookworm, Ancylostoma caninum (A. Cani...Objective To explore the possibility of using specific antigens for immunodiagnosis of hookworm desease in endemic area. Method Infective third stage larvae of the canine hookworm, Ancylostoma caninum (A. Caninum) , were prepared as the source of antigen. Enzyme linked immunoelectrotransfer blotting (EITB) was enployed as an immunodiagnostic method. Results Two immunodominant bands of hookworm antigens (42 kDa and 55 kDa) were recognized by the sera of hookworm infected patients (serum dilution 1∶200; antigen centrifuged at 36 000 r/m for 20 minutes, but not by sera from negative controls. Conclusion The 42 kDa and 55 kDa A. caninum antigens might be the specific antigens that could be used for immunodiagnosis of hookworm disease in endemic area.展开更多
Background:The role of different genotypes in nucleos(t)ide analogs(NAs)treatment is still debated.Previous studies conducted on special populations evidenced that the E genotype had the lower virological and serologi...Background:The role of different genotypes in nucleos(t)ide analogs(NAs)treatment is still debated.Previous studies conducted on special populations evidenced that the E genotype had the lower virological and serological response.This descriptive study aims to recognize the hepatitis B“s”antigen(HBsAg)decline during tenofovir disoproxil fumarate(TDF)treatment in a cohort of patient affected by chronic hepatitis B(CHB).Methods:We retrospectively included all patients with CHB treated with TDF between April 2007 and March 2012 with a duration of treatment of 7 years.Kinetics of HBsAg was determined as serological response in this cohort.We include 110 subjects;virological response was observed in all subjects with genotypes A,B,and D;in 17 patients with C genotype(94.4%)and 24 with E genotype(96%).HBeAg loss was observed in 2 patients with genotype A(50%),3 with B(100%),0 with C(0%),1 with D(20%),and 1 with E genotype(25%).Results:In multivariate analysis we observed as predictive factors of HBsAg decline the baseline level of HBsAg(OR=1.467;95%CI:1.221–5.113;p=0.017)and viral genotypes(OR=11.218;95%CI:5.441–41.138;p<0.001).Conclusion:This study confirmed higher HBsAg decline after 7 years of treatment in A and B genotypes,and lower in C,E,and D genotypes.However,no evidence is enough to choose a single NAs,but in special populations,as well as in genotype E,the use of TDF should be preferred to entecavir.展开更多
Background: Glioblastoma (GBM) is a highly virulent tumor of the central nervous system, with a median survival < 15 months. Clearly, an improvement in treatment outcomes is needed. However, the emergence of these ...Background: Glioblastoma (GBM) is a highly virulent tumor of the central nervous system, with a median survival < 15 months. Clearly, an improvement in treatment outcomes is needed. However, the emergence of these malignancies within the delicate brain parenchyma and their infiltrative growth pattern severely limit the use of aggressive local therapies. The particle therapy represents a new promising therapeutic approach to circumvent these prohibitive conditions with improved treatment efficacy. Methods and design: Patients with newly diagnosed malignant gliomas will have their tumor tissue samples submitted for the analysis of the status of O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. In Phase I, the patients will undergo an induction carbon ion radiotherapy (CIRT) boost followed by 60 GyE of proton irradiation with concurrent temozolomide (TMZ) at 75 mg/m2. To determine the maximal dose of safe induction boost, the tolerance, and acute toxicity rates in a dose-escalation manner from 9 to 18 GyE in three fractions will be used. In Phase III, GBM-only patients will be randomized to receive either 60 GyE (2 GyE per fraction) of proton irradia-tion with concurrent TMZ (control arm) or a CIRT boost (dose determined in Phase I of this trial) followed by 60 GyE of proton irradiation with concurrent TMZ. The primary endpoints are overall survival (OS) and toxicity rates (acute and long-term). Secondary endpoints are progression-free survival (PFS), and tumor response (based upon assess-ment with C-methionine/fluoro-ethyl-tyrosine positron emission tomography [MET/FET PET] or magnetic resonance imaging [MRI] and detection of serologic immune markers). We hypothesize that the induction CIRT boost will result in a greater initial tumor-killing ability and prime the tumor microenvironment for enhanced immunologic tumor clearance, resulting in an expected 33% improvement in OS rates. Discussion: The prognosis of GBM remains grim. The mechanism underpinning the poor prognosis of this malig-nancy is its chronic state of tumor hypoxia, which promotes both immunosuppression/immunologic evasion and radio-resistance. The unique physical and biological properties of CIRT are expected to overcome these microenviron-mental limitations to confer an improved tumor-killing ability and anti-tumor immune response, which could result in an improvement in OS with minimal toxicity. Trial registration number This trial has been registered with the China Clinical Trials Registry, and was allocated the number ChiCTR-OID-17013702.展开更多
文摘Objective To explore the possibility of using specific antigens for immunodiagnosis of hookworm desease in endemic area. Method Infective third stage larvae of the canine hookworm, Ancylostoma caninum (A. Caninum) , were prepared as the source of antigen. Enzyme linked immunoelectrotransfer blotting (EITB) was enployed as an immunodiagnostic method. Results Two immunodominant bands of hookworm antigens (42 kDa and 55 kDa) were recognized by the sera of hookworm infected patients (serum dilution 1∶200; antigen centrifuged at 36 000 r/m for 20 minutes, but not by sera from negative controls. Conclusion The 42 kDa and 55 kDa A. caninum antigens might be the specific antigens that could be used for immunodiagnosis of hookworm disease in endemic area.
文摘Background:The role of different genotypes in nucleos(t)ide analogs(NAs)treatment is still debated.Previous studies conducted on special populations evidenced that the E genotype had the lower virological and serological response.This descriptive study aims to recognize the hepatitis B“s”antigen(HBsAg)decline during tenofovir disoproxil fumarate(TDF)treatment in a cohort of patient affected by chronic hepatitis B(CHB).Methods:We retrospectively included all patients with CHB treated with TDF between April 2007 and March 2012 with a duration of treatment of 7 years.Kinetics of HBsAg was determined as serological response in this cohort.We include 110 subjects;virological response was observed in all subjects with genotypes A,B,and D;in 17 patients with C genotype(94.4%)and 24 with E genotype(96%).HBeAg loss was observed in 2 patients with genotype A(50%),3 with B(100%),0 with C(0%),1 with D(20%),and 1 with E genotype(25%).Results:In multivariate analysis we observed as predictive factors of HBsAg decline the baseline level of HBsAg(OR=1.467;95%CI:1.221–5.113;p=0.017)and viral genotypes(OR=11.218;95%CI:5.441–41.138;p<0.001).Conclusion:This study confirmed higher HBsAg decline after 7 years of treatment in A and B genotypes,and lower in C,E,and D genotypes.However,no evidence is enough to choose a single NAs,but in special populations,as well as in genotype E,the use of TDF should be preferred to entecavir.
基金The National Key Research and Development Program of China(Project No.2017YFC0108603)Shanghai Hospital Development Center(Joint Breakthrough Project for New Frontier Technologies.Project No.SHDC12016120)+1 种基金Science and Technology Development Fund of Shanghai Pudong New Area(Project Nos.PKJ2017-Y49 and No.PKJ2018-Y51)The authors would like to thank Dr.Fei Liang(from the Fudan University Shanghai Cancer Center)for his support in statistical analysis and advice towards the design of this protocol.
文摘Background: Glioblastoma (GBM) is a highly virulent tumor of the central nervous system, with a median survival < 15 months. Clearly, an improvement in treatment outcomes is needed. However, the emergence of these malignancies within the delicate brain parenchyma and their infiltrative growth pattern severely limit the use of aggressive local therapies. The particle therapy represents a new promising therapeutic approach to circumvent these prohibitive conditions with improved treatment efficacy. Methods and design: Patients with newly diagnosed malignant gliomas will have their tumor tissue samples submitted for the analysis of the status of O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. In Phase I, the patients will undergo an induction carbon ion radiotherapy (CIRT) boost followed by 60 GyE of proton irradiation with concurrent temozolomide (TMZ) at 75 mg/m2. To determine the maximal dose of safe induction boost, the tolerance, and acute toxicity rates in a dose-escalation manner from 9 to 18 GyE in three fractions will be used. In Phase III, GBM-only patients will be randomized to receive either 60 GyE (2 GyE per fraction) of proton irradia-tion with concurrent TMZ (control arm) or a CIRT boost (dose determined in Phase I of this trial) followed by 60 GyE of proton irradiation with concurrent TMZ. The primary endpoints are overall survival (OS) and toxicity rates (acute and long-term). Secondary endpoints are progression-free survival (PFS), and tumor response (based upon assess-ment with C-methionine/fluoro-ethyl-tyrosine positron emission tomography [MET/FET PET] or magnetic resonance imaging [MRI] and detection of serologic immune markers). We hypothesize that the induction CIRT boost will result in a greater initial tumor-killing ability and prime the tumor microenvironment for enhanced immunologic tumor clearance, resulting in an expected 33% improvement in OS rates. Discussion: The prognosis of GBM remains grim. The mechanism underpinning the poor prognosis of this malig-nancy is its chronic state of tumor hypoxia, which promotes both immunosuppression/immunologic evasion and radio-resistance. The unique physical and biological properties of CIRT are expected to overcome these microenviron-mental limitations to confer an improved tumor-killing ability and anti-tumor immune response, which could result in an improvement in OS with minimal toxicity. Trial registration number This trial has been registered with the China Clinical Trials Registry, and was allocated the number ChiCTR-OID-17013702.