The mechanisms for the regulation of synaptic dopamine (DA) include its release from presynaptic vesicles, its interaction with post-synaptic and pre-synaptic DA receptors, the reuptake of DA, via dopamine transport...The mechanisms for the regulation of synaptic dopamine (DA) include its release from presynaptic vesicles, its interaction with post-synaptic and pre-synaptic DA receptors, the reuptake of DA, via dopamine transporter (DAT), the diffusion of DA and its metabolism by mono-amine oxidase (MAO) and cate- chol-O-methyl transferase (COMT). DA controls complex and specialized functions including, movements, behavior, mood, perception, reward, and more recently, neurogenesis (Popolo et al., 2004; Reimer et al., 2013) and neuroregeneration (Hoglinger et al., 2004; Yang et al., 2008). These functions are varied and of high fidelity. Movement, as an example, requires regulatory mechanisms for initiating, stopping, slowing-down speed- ing-up, changing directions, for governing the relentless urges to move in the young and sedentariness in the old as well as in motor-freezing, catalepsy, tremor and stereotypy.展开更多
文摘The mechanisms for the regulation of synaptic dopamine (DA) include its release from presynaptic vesicles, its interaction with post-synaptic and pre-synaptic DA receptors, the reuptake of DA, via dopamine transporter (DAT), the diffusion of DA and its metabolism by mono-amine oxidase (MAO) and cate- chol-O-methyl transferase (COMT). DA controls complex and specialized functions including, movements, behavior, mood, perception, reward, and more recently, neurogenesis (Popolo et al., 2004; Reimer et al., 2013) and neuroregeneration (Hoglinger et al., 2004; Yang et al., 2008). These functions are varied and of high fidelity. Movement, as an example, requires regulatory mechanisms for initiating, stopping, slowing-down speed- ing-up, changing directions, for governing the relentless urges to move in the young and sedentariness in the old as well as in motor-freezing, catalepsy, tremor and stereotypy.