In this paper, we conduct research on the high robustness JavaEE enterprise development mode based on Hadoop and cloud servers. The current virtual machine real-time migration can only achieve manual migration, and ca...In this paper, we conduct research on the high robustness JavaEE enterprise development mode based on Hadoop and cloud servers. The current virtual machine real-time migration can only achieve manual migration, and cannot achieve full-automatic migration. In other words, when the server overload requires the administrator to artificially select a low-load host, and then hit migration command to implement the migration. In recent years, the Hadoop is becoming popular, and the read performance of the data is measured in terms of the time overhead for reading the required data. The key to reducing read time is to optimize that Hadoop cloud data read time and the RDBMS data query time. This paper integrates the mentioned techniques to construct the novel JavaEE enterprise development pattern that will promote the further development of the related techniques.展开更多
We investigate the robustness of entanglement for a multiqubit system under dephasing and bit flip channels. We exhibit the difference between the entanglement evolution of the two forms of special states, which are l...We investigate the robustness of entanglement for a multiqubit system under dephasing and bit flip channels. We exhibit the difference between the entanglement evolution of the two forms of special states, which are locally unitarily equivalent to each other and therefore possess precisely the same entanglement properties, and demonstrate that the difference increases with the number of qubits n. Moreover, those two forms of states are either the most robust genuine entangled states or the most fragile ones, which confirm that local unitary(LU) operations can greatly enhance the entanglement robustness of n-qubit states.展开更多
Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE...Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE source using refraction path is proposed.Firstly,the control equation of the refraction path is established according to the sensor coordinates and arrival times.Secondly,considering the influence of time-difference-of-arrival(TDOA)errors,the residual of the governing equation is calculated to estimate the equation weight.Thirdly,the refraction points in different directions are solved using Snell’s law and orthogonal constraints.Finally,the source coordinates are iteratively solved by weighted correction terms.The feasibility and accuracy of the proposed method are verified by pencil-lead breaking experiments.The simulation results show that the new method is almost unaffected by the refraction ratio,and always holds more stable and accurate positioning performance than the traditional method under different ratios and scales of TDOA outliers.展开更多
Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration whe...Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.展开更多
In order to solve the problem of location privacy under big data and improve the user positioning experience,a new concept of anonymous crowdsourcing-based WLAN indoor localization is proposed by employing the Micro-E...In order to solve the problem of location privacy under big data and improve the user positioning experience,a new concept of anonymous crowdsourcing-based WLAN indoor localization is proposed by employing the Micro-Electro-Mechanical System(MEMS)motion sensors as well as WLAN module in off-the-shelf smartphones.First of all,the crowdsourced motion traces with similar Received Signal Strength(RSS)sequences are assembled into a motion graph.Second,the mobility map is constructed according to traces segmentation and clustering.Third,the pixel template matching is adopted to physically label the pre-constructed mobility map.Finally,the robust Extended Kalman Filter(EKF)is designed to perform localization by matching the newly-collected RSS measurements against the mobility map.The extensive experimental results show that the proposed approach is capable of constructing a physically-labeled mobility map from the sporadically-collected crowdsourced motion traces as well as achieving satisfactory localization accuracy in a cost-efficient manner.展开更多
Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the und...Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty, which limit their further application in practical engineering. In this paper, a new method of source localization in shallow water, based on vector optimization concept, is described, which is highly robust against environmental factors affecting the localization, such as the channel depth, the bottom reflection coefficients, and so on. Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom, the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation. It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints. It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method, such as the sottware tool, SeDuMi. Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.展开更多
A structure of logical hierarchical cluster for the distributed multimedia on demand server is proposed. The architecture is mainly composed of the network topology and the resource management of all server nodes. Ins...A structure of logical hierarchical cluster for the distributed multimedia on demand server is proposed. The architecture is mainly composed of the network topology and the resource management of all server nodes. Instead of the physical network hierarchy or the independent management hierarchy, the nodes are organized into a logically hieraxchical cluster according to the multimedia block they caches in the midderware layer. The process of a member joining/leaving or the structure adjustment cooperatively implemented by all members is concerned with decentralized maintenance of the logical cluster hierarchy. As the root of each logically hierarchical cluster is randomly mapped into the system, the logical structure of a multimedia block is dynamically expanded across some regions by the two replication policies in different load state respectively. The local load diversion is applied to fine-tune the load of nodes within a local region but belongs to different logical hierarchies. Guaranteed by the dynamic expansion of a logical structure and the load diversion of a local region, the users always select a closest idle node from the logical hierarchy under the condition of topology integration with resource management.展开更多
The magnetic information measured on the smartphone platform has a large fluctuation and the research of indoor localization algorithm based on smart-phone platform is less. Indoor localization algorithm on smartphone...The magnetic information measured on the smartphone platform has a large fluctuation and the research of indoor localization algorithm based on smart-phone platform is less. Indoor localization algorithm on smartphone platform based on particle filter is studied. Robust local weighted regression is used to smooth the original magnetic data in the process of constructing magnetic map. Use moving average filtering model to filter the online magnetic observation data in positioning process. Compare processed online magnetic data with processed magnetic map collected by smartphone platform and the average matching error is 0.3941uT. Average positioning error is 0.229 meter when using processed online and map data.展开更多
We present an omnidirectional vision system we have implemented to provide our mobile robot with a fast tracking and robust localization capability. An algorithm is proposed to do reconstruction of the environment fro...We present an omnidirectional vision system we have implemented to provide our mobile robot with a fast tracking and robust localization capability. An algorithm is proposed to do reconstruction of the environment from the omnidirectional image and global localization of the robot in the context of the Middle Size League RoboCup field. This is accomplished by learning a set of visual landmarks such as the goals and the corner posts. Due to the dynamic changing environment and the partially observable landmarks, four localization cases are discussed in order to get robust localization performance. Localization is performed using a method that matches the observed landmarks, i.e. color blobs, which are extracted from the environment. The advantages of the cylindrical projection are discussed giving special consideration to the characteristics of the visual landmark and the meaning of the blob extraction. The analysis is established based on real time experiments with our omnidirectional vision system and the actual mobile robot. The comparative studies are presented and the feasibility of the method is shown.展开更多
随着武器技术的不断发展,常规弹药的制导化改造已成为一种必然趋势。通过应用精确制导技术,可以显著提高弹药的打击精度和效率。而在实现弹药制导化改造的过程中,精准测量角速度是一项关键核心技术。微机电系统(Micro-Electro Mechanica...随着武器技术的不断发展,常规弹药的制导化改造已成为一种必然趋势。通过应用精确制导技术,可以显著提高弹药的打击精度和效率。而在实现弹药制导化改造的过程中,精准测量角速度是一项关键核心技术。微机电系统(Micro-Electro Mechanical System,MEMS)陀螺仪存在输出信号噪声大、精度低的问题,针对上述问题,提出了一种自适应噪声完备集合鲁棒局部均值分解(CERLMDAN)和归一化LMS算法(Normalized Least Mean Square,NLMS)结合的滤波模型。该模型通过在鲁棒局部均值分解(Robust Local Mean Decomposition,RLMD)过程中添加白噪声将原始数据分解为多个乘积函数(Product Functions,PF),并根据排列熵(Permutation Entropy,PE)将PF分为混合PF和有用PF;其次对混合PF使用NLMS去噪;最后,把处理后的PF和有用PF进行重构,得到去噪后的信号。试验表明,本文提出的去噪模型对信号均值与方差有显著提升,信号均值由0.5891提升至0.5396,信号方差由44.473提升至5.2692。展开更多
文摘In this paper, we conduct research on the high robustness JavaEE enterprise development mode based on Hadoop and cloud servers. The current virtual machine real-time migration can only achieve manual migration, and cannot achieve full-automatic migration. In other words, when the server overload requires the administrator to artificially select a low-load host, and then hit migration command to implement the migration. In recent years, the Hadoop is becoming popular, and the read performance of the data is measured in terms of the time overhead for reading the required data. The key to reducing read time is to optimize that Hadoop cloud data read time and the RDBMS data query time. This paper integrates the mentioned techniques to construct the novel JavaEE enterprise development pattern that will promote the further development of the related techniques.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFE0200700)the National Natural Science Foundation of China(Grant Nos.61627820 and 61934003)
文摘We investigate the robustness of entanglement for a multiqubit system under dephasing and bit flip channels. We exhibit the difference between the entanglement evolution of the two forms of special states, which are locally unitarily equivalent to each other and therefore possess precisely the same entanglement properties, and demonstrate that the difference increases with the number of qubits n. Moreover, those two forms of states are either the most robust genuine entangled states or the most fragile ones, which confirm that local unitary(LU) operations can greatly enhance the entanglement robustness of n-qubit states.
基金the National Natural Science Foundation of China (Nos.52304123 and 52104077)the Postdoctoral Fellowship Program of CPSF (No.GZB20230914)+1 种基金the China Postdoctoral Science Foundation (No.2023M730412)the National Key Research and Development Program for Young Scientists (No.2021YFC2900400)。
文摘Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE source using refraction path is proposed.Firstly,the control equation of the refraction path is established according to the sensor coordinates and arrival times.Secondly,considering the influence of time-difference-of-arrival(TDOA)errors,the residual of the governing equation is calculated to estimate the equation weight.Thirdly,the refraction points in different directions are solved using Snell’s law and orthogonal constraints.Finally,the source coordinates are iteratively solved by weighted correction terms.The feasibility and accuracy of the proposed method are verified by pencil-lead breaking experiments.The simulation results show that the new method is almost unaffected by the refraction ratio,and always holds more stable and accurate positioning performance than the traditional method under different ratios and scales of TDOA outliers.
基金supported by the National Natural Science Foundation of China (60802043)the National Basic Research Program of China(973 Program) (2010CB327900)
文摘Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.
基金the National Natural Science Foundation of China(61771083,61704015)Program for Changjiang Scholars and Innovative Research Team in University(IRT1299)+2 种基金Special Fund of Chongqing Key Laboratory(CSTC),Fundamental and Frontier Research Project of Chongqing(cstc2017jcyjAX0380,cstc2015jcyjBX0065)University Outstanding Achievement Transformation Project of Chongqing(KJZH17117)Postgraduate Scientific Research and Innovation Project of Chongqing(CYS17221).
文摘In order to solve the problem of location privacy under big data and improve the user positioning experience,a new concept of anonymous crowdsourcing-based WLAN indoor localization is proposed by employing the Micro-Electro-Mechanical System(MEMS)motion sensors as well as WLAN module in off-the-shelf smartphones.First of all,the crowdsourced motion traces with similar Received Signal Strength(RSS)sequences are assembled into a motion graph.Second,the mobility map is constructed according to traces segmentation and clustering.Third,the pixel template matching is adopted to physically label the pre-constructed mobility map.Finally,the robust Extended Kalman Filter(EKF)is designed to perform localization by matching the newly-collected RSS measurements against the mobility map.The extensive experimental results show that the proposed approach is capable of constructing a physically-labeled mobility map from the sporadically-collected crowdsourced motion traces as well as achieving satisfactory localization accuracy in a cost-efficient manner.
基金This Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20122304120011)the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No.HEUCFR1119)
文摘Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty, which limit their further application in practical engineering. In this paper, a new method of source localization in shallow water, based on vector optimization concept, is described, which is highly robust against environmental factors affecting the localization, such as the channel depth, the bottom reflection coefficients, and so on. Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom, the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation. It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints. It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method, such as the sottware tool, SeDuMi. Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.
文摘A structure of logical hierarchical cluster for the distributed multimedia on demand server is proposed. The architecture is mainly composed of the network topology and the resource management of all server nodes. Instead of the physical network hierarchy or the independent management hierarchy, the nodes are organized into a logically hieraxchical cluster according to the multimedia block they caches in the midderware layer. The process of a member joining/leaving or the structure adjustment cooperatively implemented by all members is concerned with decentralized maintenance of the logical cluster hierarchy. As the root of each logically hierarchical cluster is randomly mapped into the system, the logical structure of a multimedia block is dynamically expanded across some regions by the two replication policies in different load state respectively. The local load diversion is applied to fine-tune the load of nodes within a local region but belongs to different logical hierarchies. Guaranteed by the dynamic expansion of a logical structure and the load diversion of a local region, the users always select a closest idle node from the logical hierarchy under the condition of topology integration with resource management.
文摘The magnetic information measured on the smartphone platform has a large fluctuation and the research of indoor localization algorithm based on smart-phone platform is less. Indoor localization algorithm on smartphone platform based on particle filter is studied. Robust local weighted regression is used to smooth the original magnetic data in the process of constructing magnetic map. Use moving average filtering model to filter the online magnetic observation data in positioning process. Compare processed online magnetic data with processed magnetic map collected by smartphone platform and the average matching error is 0.3941uT. Average positioning error is 0.229 meter when using processed online and map data.
文摘We present an omnidirectional vision system we have implemented to provide our mobile robot with a fast tracking and robust localization capability. An algorithm is proposed to do reconstruction of the environment from the omnidirectional image and global localization of the robot in the context of the Middle Size League RoboCup field. This is accomplished by learning a set of visual landmarks such as the goals and the corner posts. Due to the dynamic changing environment and the partially observable landmarks, four localization cases are discussed in order to get robust localization performance. Localization is performed using a method that matches the observed landmarks, i.e. color blobs, which are extracted from the environment. The advantages of the cylindrical projection are discussed giving special consideration to the characteristics of the visual landmark and the meaning of the blob extraction. The analysis is established based on real time experiments with our omnidirectional vision system and the actual mobile robot. The comparative studies are presented and the feasibility of the method is shown.
文摘随着武器技术的不断发展,常规弹药的制导化改造已成为一种必然趋势。通过应用精确制导技术,可以显著提高弹药的打击精度和效率。而在实现弹药制导化改造的过程中,精准测量角速度是一项关键核心技术。微机电系统(Micro-Electro Mechanical System,MEMS)陀螺仪存在输出信号噪声大、精度低的问题,针对上述问题,提出了一种自适应噪声完备集合鲁棒局部均值分解(CERLMDAN)和归一化LMS算法(Normalized Least Mean Square,NLMS)结合的滤波模型。该模型通过在鲁棒局部均值分解(Robust Local Mean Decomposition,RLMD)过程中添加白噪声将原始数据分解为多个乘积函数(Product Functions,PF),并根据排列熵(Permutation Entropy,PE)将PF分为混合PF和有用PF;其次对混合PF使用NLMS去噪;最后,把处理后的PF和有用PF进行重构,得到去噪后的信号。试验表明,本文提出的去噪模型对信号均值与方差有显著提升,信号均值由0.5891提升至0.5396,信号方差由44.473提升至5.2692。