传统的静态检测恶意JavaScript代码方法十分依赖于已有的恶意代码特征,无法有效提取混淆恶意代码特征,导致检测混淆恶意JavaScript代码的精确率低。针对该问题提出基于双向长短期记忆网络(Bidirectional Long Short-term Memory, Bi-LS...传统的静态检测恶意JavaScript代码方法十分依赖于已有的恶意代码特征,无法有效提取混淆恶意代码特征,导致检测混淆恶意JavaScript代码的精确率低。针对该问题提出基于双向长短期记忆网络(Bidirectional Long Short-term Memory, Bi-LSTM)的恶意代码检测模型。通过抽象语法树将JavaScript代码转化为句法单元序列,通过Doc2Vec算法将句法单元序列用分布式向量表示,将句向量矩阵送入Bi-LSTM模型进行检测。实验结果表明,该方法对于混淆恶意JavaScript代码具有良好的检测效果且检测效率高,准确率为97.03%,召回率为97.10%。展开更多
文摘传统的静态检测恶意JavaScript代码方法十分依赖于已有的恶意代码特征,无法有效提取混淆恶意代码特征,导致检测混淆恶意JavaScript代码的精确率低。针对该问题提出基于双向长短期记忆网络(Bidirectional Long Short-term Memory, Bi-LSTM)的恶意代码检测模型。通过抽象语法树将JavaScript代码转化为句法单元序列,通过Doc2Vec算法将句法单元序列用分布式向量表示,将句向量矩阵送入Bi-LSTM模型进行检测。实验结果表明,该方法对于混淆恶意JavaScript代码具有良好的检测效果且检测效率高,准确率为97.03%,召回率为97.10%。