This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
In this research, effect of varying spatial orientations on the build time requirements for fused deposition modelling process is studied. Constructive solid geometry cylindrical primitive is taken as work piece and m...In this research, effect of varying spatial orientations on the build time requirements for fused deposition modelling process is studied. Constructive solid geometry cylindrical primitive is taken as work piece and modeling is accomplished for it. Response surface methodology is used to design the experiments and obtain statistical models for build time requirements corresponding to different orientations of the given primitive in modeller build volume. Contour width, air gap, slice height, raster width, raster angle and angle of orientation are treated as process parameters. Percentage contribution of individual process parameter is found to change for build time corresponding to different spatial orientations. Also, the average of build time requirement changes with spatial orientation. This paper attempts to clearly discuss and describe the observations with an aim to develop a clear understanding of effect of spatial variations on the build time for Fused Deposition Modelling process. This work is an integral part of process layout optimization and these results can effectively aid designers specially while tackling nesting issues.展开更多
The midpoint impact assessment methodology and several weighting methods that are currently used by most building Life cycle assessment (LCA) researchers in China, still have some shortcomings. In order to make the ev...The midpoint impact assessment methodology and several weighting methods that are currently used by most building Life cycle assessment (LCA) researchers in China, still have some shortcomings. In order to make the evaluation results have better temporal and spatial applicability, the endpoint impact assessment methodology was adopted in this paper. Based on the endpoint damage oriented concept, four endpoints of resource exhaustion, energy exhaustion, human health damage and ecosystem damage were selected according to the situation of China and the specialties of the building industry. Subsequently the formula for calculating each endpoint, the background value for normalization and the weighting factors were defined. Following that, an endpoint damage oriented model to evaluate the life cycle environmental impact of buildings in China was established. This model can produce an integrated indicator for environmental impact, and consequently provides references for directing the sustainable building design.展开更多
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
文摘In this research, effect of varying spatial orientations on the build time requirements for fused deposition modelling process is studied. Constructive solid geometry cylindrical primitive is taken as work piece and modeling is accomplished for it. Response surface methodology is used to design the experiments and obtain statistical models for build time requirements corresponding to different orientations of the given primitive in modeller build volume. Contour width, air gap, slice height, raster width, raster angle and angle of orientation are treated as process parameters. Percentage contribution of individual process parameter is found to change for build time corresponding to different spatial orientations. Also, the average of build time requirement changes with spatial orientation. This paper attempts to clearly discuss and describe the observations with an aim to develop a clear understanding of effect of spatial variations on the build time for Fused Deposition Modelling process. This work is an integral part of process layout optimization and these results can effectively aid designers specially while tackling nesting issues.
基金the National "11th Five-year" Technical Supporting Project (Grant No. 2006BAJ01A10)
文摘The midpoint impact assessment methodology and several weighting methods that are currently used by most building Life cycle assessment (LCA) researchers in China, still have some shortcomings. In order to make the evaluation results have better temporal and spatial applicability, the endpoint impact assessment methodology was adopted in this paper. Based on the endpoint damage oriented concept, four endpoints of resource exhaustion, energy exhaustion, human health damage and ecosystem damage were selected according to the situation of China and the specialties of the building industry. Subsequently the formula for calculating each endpoint, the background value for normalization and the weighting factors were defined. Following that, an endpoint damage oriented model to evaluate the life cycle environmental impact of buildings in China was established. This model can produce an integrated indicator for environmental impact, and consequently provides references for directing the sustainable building design.