The Prony Analysis is already used in different fields of science and industries. The described new approach intends assessing the performance of Servo Drive Control. The basic approach is, that two important dynamic ...The Prony Analysis is already used in different fields of science and industries. The described new approach intends assessing the performance of Servo Drive Control. The basic approach is, that two important dynamic parameters of closed loop behavior, damping and frequency, are estimated by the Prony method. Hence analyzing a control loop in this way leads to a statement concerning the quality of control and allows comparing different parameter sets. The paper presents results achieved by using this method on a test rig.展开更多
Control methods of hysteresis current vector control of permanent magnet synchronous servo drive fed by voltage source inverter are examined. Detailed description of the control methods in stationary reference frame w...Control methods of hysteresis current vector control of permanent magnet synchronous servo drive fed by voltage source inverter are examined. Detailed description of the control methods in stationary reference frame with circle, square and hexagon shape tolerance area using adaptive solutions is presented. The theoretical considerations are supported by simulation results.展开更多
A novel adaptive robust control (ARC) is presented for the four-motor driving servo systems with the uncertain nonlinearities and actuation failures, such that the load tracking control is achieved with the proximat...A novel adaptive robust control (ARC) is presented for the four-motor driving servo systems with the uncertain nonlinearities and actuation failures, such that the load tracking control is achieved with the proximate optimal-time. By applying the proposed scheme, several control objectives are achieved. First, the nonlinear synchronization algorithm is presented to maintain the velocity synchronization of each motor, which provides fast convergence without chatting. Moreover, the time-varying bias torque is applied to eliminate the effect of backlash and reduce the waste of energy. Then, the ARC is designed to achieve the proximate optimal-time output tracking with the transient performance in L2 norm, where the friction and actuation failures are addressed by the adaptive scheme based on the norm estimation of unknown parameter vector. Finally, the extensive simulated and experimental results validate the effectiveness of the proposed method.展开更多
A new ball screw dynamic model was developed under the adequate consideration of the interaction in the screw-nut assembly (not only the mutual-coupling factors but also the self-coupling factors) . Based on this mode...A new ball screw dynamic model was developed under the adequate consideration of the interaction in the screw-nut assembly (not only the mutual-coupling factors but also the self-coupling factors) . Based on this model,the multi-flexible body (MFB)dynamic model of ball screw feed drive system was then founded in order to take full account of the influencing factor of system flexibility and study the dynamic behaviors of the whole mechanical transmissions. Moreover,the MFB based state space modeling was proposed by modal state space method, which extraced the eigenmodes of more dominant modes and applied them into an MFB state space model,and realized the integrated model of servo drives and MFB mechanical transmissions more effectively and efficiently. In conclusion,the comparisons between simulations and experimental results show: the stiffness formulation of the ball screw assembly derived above is a suitable method for achieving accurate MFB models of ball screw mechanical transmission systems,this proposed MFB model is valid,and the integrated model of ball screw feed drive system is accurate and reliable. All these provide the important approaches and guidelines for dynamic characteristic study and selection of control parameters in the machine tool design period.展开更多
This study aims to explore the humanoid robot joint servo drive integration design and adaptive backstepping control. To make the humanoid robot have explosive power as the human does, simply increasing the power outp...This study aims to explore the humanoid robot joint servo drive integration design and adaptive backstepping control. To make the humanoid robot have explosive power as the human does, simply increasing the power output of the motor of a lightweight design cannot meet the demand of moving heavy objects and so on. Moreover, the backstepping control algorithm is designed to implement the dual-arm cooperative control. The joint servo drive is redesigned in the present study, which can drive the motor at a limitation state when needed output high-voltage pulse can stimulate the motor so that the motor can produce an instantaneous large torque. A miniature design scheme is presented in this study for the servo drive, explaining the design method of each part module. The ex- perimental data illustrate that the servo drive can produce an output torque greater than the rate of the high-voltage pulse that stimulates the motor. Knowledge of the control of humanoid robot moving a heavy object has important practical significance. The present study provides a complete actual problem and exhibits a real practical use case which can be used to speed up the explosive humanoid robot arms.展开更多
This paper presented a novel variable rate fertilization system based on the method of adjusting the active feed-roll length of a fluted roller.The feasibility of this method was discussed using analysis of the fluted...This paper presented a novel variable rate fertilization system based on the method of adjusting the active feed-roll length of a fluted roller.The feasibility of this method was discussed using analysis of the fluted roller model.One seed drill produced by Kuhn Company(France),which could sow and fertilize simultaneously,was used as a test platform to implement the mechanical structure of variable rate fertilization.The design methods for the variable rate fertilization mechanical structure and actuator were introduced in detail.A low-cost and stable embedded support decision subsystem and corresponding software were developed.The support decision subsystem is based on grid management.Each grid field cell contains information about corresponding spatial position and fertilizer application rate.A SpatiaLite database was employed to solve the spatial location search and spatial data query.Experiments were conducted to evaluate the fertilization uniformity and dynamic response time.The average value of coefficient of variation is 8.4%in five different active feed-roll lengths which reflects good uniformity.The dynamic response times for the adjustment of variable rate fertilization system from 204 kg/hm^(2) to 319 kg/hm^(2) and 319 kg/hm^(2) to 204 kg/hm^(2) are about 4.2 s.The results suggest that the variable rate fertilization system performs well in dynamic adjustment and stability.展开更多
Automated production systems typically comprise numerous electrical servo drives,many of which conduct positioning motions,e.g.for handling or manipulation tasks.The power electronics of modern multi-axis systems ofte...Automated production systems typically comprise numerous electrical servo drives,many of which conduct positioning motions,e.g.for handling or manipulation tasks.The power electronics of modern multi-axis systems often comprise coupled DC-links,enabling for internal exchange of recuperative brake energy.However,the motion sequences of manipulators are often commanded at maximum dynamics for minimum time motion,neglecting possible optimization potential,e.g.available idle time,leading to inefficient energy management.A robust trajectory optimization approach based on the particle swarm algorithm and well-established path planning methods is presented for the adaption of multi-axis positioning tasks with only two parameters per axis and positioning motion during system run-time.Experimental results prove that,depending on the positioning task and chosen optimization constraints,energy demands are distinctly reduced.The approach is applicable to diverse multi-axis configurations and enables for considerable energy savings without additional hardware invest.展开更多
文摘The Prony Analysis is already used in different fields of science and industries. The described new approach intends assessing the performance of Servo Drive Control. The basic approach is, that two important dynamic parameters of closed loop behavior, damping and frequency, are estimated by the Prony method. Hence analyzing a control loop in this way leads to a statement concerning the quality of control and allows comparing different parameter sets. The paper presents results achieved by using this method on a test rig.
文摘Control methods of hysteresis current vector control of permanent magnet synchronous servo drive fed by voltage source inverter are examined. Detailed description of the control methods in stationary reference frame with circle, square and hexagon shape tolerance area using adaptive solutions is presented. The theoretical considerations are supported by simulation results.
基金This work was supported by the National Natural Science Foundation of China (Nos. 61433003, 61273150), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61321002) and the Doctoral Program of Higher Education of China (No. 20121101110029).
文摘A novel adaptive robust control (ARC) is presented for the four-motor driving servo systems with the uncertain nonlinearities and actuation failures, such that the load tracking control is achieved with the proximate optimal-time. By applying the proposed scheme, several control objectives are achieved. First, the nonlinear synchronization algorithm is presented to maintain the velocity synchronization of each motor, which provides fast convergence without chatting. Moreover, the time-varying bias torque is applied to eliminate the effect of backlash and reduce the waste of energy. Then, the ARC is designed to achieve the proximate optimal-time output tracking with the transient performance in L2 norm, where the friction and actuation failures are addressed by the adaptive scheme based on the norm estimation of unknown parameter vector. Finally, the extensive simulated and experimental results validate the effectiveness of the proposed method.
基金National Science and Technology Major Project of China(No.2011ZX04016-02)
文摘A new ball screw dynamic model was developed under the adequate consideration of the interaction in the screw-nut assembly (not only the mutual-coupling factors but also the self-coupling factors) . Based on this model,the multi-flexible body (MFB)dynamic model of ball screw feed drive system was then founded in order to take full account of the influencing factor of system flexibility and study the dynamic behaviors of the whole mechanical transmissions. Moreover,the MFB based state space modeling was proposed by modal state space method, which extraced the eigenmodes of more dominant modes and applied them into an MFB state space model,and realized the integrated model of servo drives and MFB mechanical transmissions more effectively and efficiently. In conclusion,the comparisons between simulations and experimental results show: the stiffness formulation of the ball screw assembly derived above is a suitable method for achieving accurate MFB models of ball screw mechanical transmission systems,this proposed MFB model is valid,and the integrated model of ball screw feed drive system is accurate and reliable. All these provide the important approaches and guidelines for dynamic characteristic study and selection of control parameters in the machine tool design period.
文摘This study aims to explore the humanoid robot joint servo drive integration design and adaptive backstepping control. To make the humanoid robot have explosive power as the human does, simply increasing the power output of the motor of a lightweight design cannot meet the demand of moving heavy objects and so on. Moreover, the backstepping control algorithm is designed to implement the dual-arm cooperative control. The joint servo drive is redesigned in the present study, which can drive the motor at a limitation state when needed output high-voltage pulse can stimulate the motor so that the motor can produce an instantaneous large torque. A miniature design scheme is presented in this study for the servo drive, explaining the design method of each part module. The ex- perimental data illustrate that the servo drive can produce an output torque greater than the rate of the high-voltage pulse that stimulates the motor. Knowledge of the control of humanoid robot moving a heavy object has important practical significance. The present study provides a complete actual problem and exhibits a real practical use case which can be used to speed up the explosive humanoid robot arms.
基金We acknowledge that the research is supported by the National Key Technology Research and Development Program(No.2012BAK17B15).
文摘This paper presented a novel variable rate fertilization system based on the method of adjusting the active feed-roll length of a fluted roller.The feasibility of this method was discussed using analysis of the fluted roller model.One seed drill produced by Kuhn Company(France),which could sow and fertilize simultaneously,was used as a test platform to implement the mechanical structure of variable rate fertilization.The design methods for the variable rate fertilization mechanical structure and actuator were introduced in detail.A low-cost and stable embedded support decision subsystem and corresponding software were developed.The support decision subsystem is based on grid management.Each grid field cell contains information about corresponding spatial position and fertilizer application rate.A SpatiaLite database was employed to solve the spatial location search and spatial data query.Experiments were conducted to evaluate the fertilization uniformity and dynamic response time.The average value of coefficient of variation is 8.4%in five different active feed-roll lengths which reflects good uniformity.The dynamic response times for the adjustment of variable rate fertilization system from 204 kg/hm^(2) to 319 kg/hm^(2) and 319 kg/hm^(2) to 204 kg/hm^(2) are about 4.2 s.The results suggest that the variable rate fertilization system performs well in dynamic adjustment and stability.
基金Supported by the German Research Foundation(DFG)[grant number OR196/4-2].
文摘Automated production systems typically comprise numerous electrical servo drives,many of which conduct positioning motions,e.g.for handling or manipulation tasks.The power electronics of modern multi-axis systems often comprise coupled DC-links,enabling for internal exchange of recuperative brake energy.However,the motion sequences of manipulators are often commanded at maximum dynamics for minimum time motion,neglecting possible optimization potential,e.g.available idle time,leading to inefficient energy management.A robust trajectory optimization approach based on the particle swarm algorithm and well-established path planning methods is presented for the adaption of multi-axis positioning tasks with only two parameters per axis and positioning motion during system run-time.Experimental results prove that,depending on the positioning task and chosen optimization constraints,energy demands are distinctly reduced.The approach is applicable to diverse multi-axis configurations and enables for considerable energy savings without additional hardware invest.