Satellite networks are recognized as the most essential communication infrastructures in the world today,which complement land networks and provide valuable services for their users.Extensive coverage and service stab...Satellite networks are recognized as the most essential communication infrastructures in the world today,which complement land networks and provide valuable services for their users.Extensive coverage and service stability of these networks have increased their popularity.Since eavesdropping and active intrusion in satellite communications are much easier than in terrestrial networks,securing satellite communications is vital.So far,several protocols have been proposed for authentication and key exchange of satellite communications,but none of them fullymeet the security requirements.In this paper,we examine one of these protocols and identify its security vulnerabilities.Moreover,we propose a robust and secure authentication and session key agreement protocol using the elliptic curve cryptography(ECC).We show that the proposed protocol meets common security requirements and is resistant to known security attacks.Moreover,we prove that the proposed scheme satisfies the security features using the Automated Validation of Internet Security Protocols and Applications(AVISPA)formal verification tool and On-the fly Model-Checker(OFMC)and ATtack SEarcher(ATSE)model checkers.We have also proved the security of the session key exchange of our protocol using theReal orRandom(RoR)model.Finally,the comparison of our scheme with similar methods shows its superiority.展开更多
Many improved authentication solutions were put forward, on purpose of authenticating more quickly and securely.However, neither the overuse of hash function,or additional symmetric encryption, can truly increase the ...Many improved authentication solutions were put forward, on purpose of authenticating more quickly and securely.However, neither the overuse of hash function,or additional symmetric encryption, can truly increase the overall security. Instead,extra computation cost degraded the performance.They were still vulnerable to a variety of threats, such as smart card loss attack and impersonation attack, due to hidden loopholes and flaws. Even worse, user's identity can be parsed in insecure environment, even became traceable. Aiming to protect identity, a lightweight mutual authentication scheme is proposed. Redundant operations are removed,which make the verification process more explicit. It gains better performance with average cost compared to other similar schemes.Cryptanalysis shows the proposed scheme can resist common attacks and achieve user anonymity.Formal security is further verified by using the widely accepted Automated Validation of Internet Security Protocols and Applications(AVISPA) tool.展开更多
文摘Satellite networks are recognized as the most essential communication infrastructures in the world today,which complement land networks and provide valuable services for their users.Extensive coverage and service stability of these networks have increased their popularity.Since eavesdropping and active intrusion in satellite communications are much easier than in terrestrial networks,securing satellite communications is vital.So far,several protocols have been proposed for authentication and key exchange of satellite communications,but none of them fullymeet the security requirements.In this paper,we examine one of these protocols and identify its security vulnerabilities.Moreover,we propose a robust and secure authentication and session key agreement protocol using the elliptic curve cryptography(ECC).We show that the proposed protocol meets common security requirements and is resistant to known security attacks.Moreover,we prove that the proposed scheme satisfies the security features using the Automated Validation of Internet Security Protocols and Applications(AVISPA)formal verification tool and On-the fly Model-Checker(OFMC)and ATtack SEarcher(ATSE)model checkers.We have also proved the security of the session key exchange of our protocol using theReal orRandom(RoR)model.Finally,the comparison of our scheme with similar methods shows its superiority.
基金supported by the National Key Research and Development Program of China (No. 2017YFC0820603)
文摘Many improved authentication solutions were put forward, on purpose of authenticating more quickly and securely.However, neither the overuse of hash function,or additional symmetric encryption, can truly increase the overall security. Instead,extra computation cost degraded the performance.They were still vulnerable to a variety of threats, such as smart card loss attack and impersonation attack, due to hidden loopholes and flaws. Even worse, user's identity can be parsed in insecure environment, even became traceable. Aiming to protect identity, a lightweight mutual authentication scheme is proposed. Redundant operations are removed,which make the verification process more explicit. It gains better performance with average cost compared to other similar schemes.Cryptanalysis shows the proposed scheme can resist common attacks and achieve user anonymity.Formal security is further verified by using the widely accepted Automated Validation of Internet Security Protocols and Applications(AVISPA) tool.