Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll wor...Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll workpieces, and types of measurement systems and measurement methods have been developed. However, low measurement efficiency and low measurement accuracy caused by setting errors are the common disadvantages for surface profile measurement of microstructured roll workpieces. In order to shorten the measurement time and enhance the measurement accuracy, a method for self-calibration and compensation of setting errors is proposed for surface profile measurement of microstructured roll workpieces. A measurement system is constructed for the measurement, in which a precision spindle is employed to rotate the roll workpiece and an air-bearing displacement sensor with a micro-stylus probe is employed to scan the microstructured surface of the roll workpiece. The resolution of the displacement sensor is 0.14 nm and that of the rotary encoder of the spindle was 0.15r~. Geometrical and mathematical models are established for analyzing the influences of the setting errors of the roll workpiece and the displacement sensor with respect to the axis of the spindle, including the eccentric error of the roll workpiece, the offset error of the sensor axis and the zero point error of the sensor output. Measurement experiments are carded out on a roll workpiece on which periodic microstructures are a period of 133 i^m along the circumferential direction. Experimental results demonstrate the feasibility of the self-compensation method. The proposed method can be used to detect and compensate the setting errors without using any additional accurate artifact.展开更多
This study aims to evaluate inter-fractional set-up errors in patients treated with distinct immobilization equipment (thermoplastic mask, knee-fix and feet-fix, wing board and vac-lok) for four anatomical regions inc...This study aims to evaluate inter-fractional set-up errors in patients treated with distinct immobilization equipment (thermoplastic mask, knee-fix and feet-fix, wing board and vac-lok) for four anatomical regions including brain, head and neck (HN), thorax and pelvis. Data of randomly selected 140 patients who were treated for four anatomical regions were obtained using Hi-Art Helical Tomotherapy (HT) system. Pre-treatment planning was based on automatic registration readings of computed tomography (CT) and mega-voltage computed tomography (MVCT) on a daily basis. Distinct immobilization equipment was used for varying anatomical regions. Individual mean set-up error (M), systematic error (Σ), and random error (σ) values were calculated through daily translational and rotational deviation values. The size of translational, systematic and random error was 1.31 - 4.93 mm for brain, 2.28 - 4.88 mm for HN, 4.04 - 9.90 mm for thorax, and 6.34 - 14.68 mm for pelvis. Rotational values were as follows: 0.06° - 0.73° for brain, 0.42° - 0.6° for HN, 0.48° - 1.14° for thorax and 0.65° - 1.05° for pelvis. The highest translational, systematic and random error value was obtained from the pelvic regional. The highest standard and random error value in pitch and roll was produced in the rotational direction of the pelvis (0.05° and 0.71°), while the highest error value in yaw was (1.14°) produced from thorax. Inter-fractional set-up errors were most commonly produced in the pelvis, followed by thorax. Our study results suggest that the highest systematic and random errors are found for thorax and pelvis. Distinct immobilization equipment was important in these results. Safety margins around the clinical target volume (CTV) are changeable for different anatomical regions. A future work could be developed to new equipment for immobilization because of the reduced margins CTV.展开更多
A new concept of generalized set-valued strongly accretive mappings in Banach spaces was given and some strong convergence theorems of Ishikawa and Mann iterative process with errors approximation methods by Huang et ...A new concept of generalized set-valued strongly accretive mappings in Banach spaces was given and some strong convergence theorems of Ishikawa and Mann iterative process with errors approximation methods by Huang et al. was proved. The results presented in this paper improve and extend the earlier results obtained by Huang et al.展开更多
A new conception of generalized set-valued Ф-hemi-contractive mapping in Banach spaces is presented. Some strong convergence theorems of Ishikawa and Mann iterative approximation with errors is proved. The results in...A new conception of generalized set-valued Ф-hemi-contractive mapping in Banach spaces is presented. Some strong convergence theorems of Ishikawa and Mann iterative approximation with errors is proved. The results in this paper improve and extend the earlier results.展开更多
Precision grinding is a key process for realizing the use of large-aperture aspherical optical elements in laser nuclear fusion devices,large-aperture astronomical telescopes,and high-resolution space cameras.In this ...Precision grinding is a key process for realizing the use of large-aperture aspherical optical elements in laser nuclear fusion devices,large-aperture astronomical telescopes,and high-resolution space cameras.In this study,the arc envelope grinding process of large-aperture aspherical optics is investigated using a CM1500 precision grinding machine with a maximum machinable diameter ofΦ1500 mm.The form error of the aspherical workpiece induced by wheel setting errors is analytically modeled for both parallel and cross grinding.Results show that the form error is more sensitive to the wheel setting error along the feed direction than that along the lateral direction.It is a bilinear function of the feed-direction wheel setting error and the distance to the optical axis.Based on the error function above,a method to determine the wheel setting error is proposed.Subsequently,grinding tests are performed with the wheels aligned accurately.Using a newly proposed partial error compensation method with an appropriate compensation factor,a form error of 3.4μm peak-to-valley(PV)for aΦ400 mm elliptical K9 glass surface is achieved.展开更多
This paper proposes a steady-state errors correction(SSEC)method for eliminating measurement errors.This method is based on the detections of error signal E(s)and output C(s)which generate an expected output R(s).In c...This paper proposes a steady-state errors correction(SSEC)method for eliminating measurement errors.This method is based on the detections of error signal E(s)and output C(s)which generate an expected output R(s).In comparison with the conventional solutions which are based on detecting the expected output R(s)and output C(s)to obtain error signal E(s),the measurement errors are eliminated even the error might be at a significant level.Moreover,it is possible that the individual debugging by regulating the coefficient K for every member of the multiple objectives achieves the optimization of the open loop gain.Therefore,this simple method can be applied to the weak coupling and multiple objectives system,which is usually controlled by complex controller.The principle of eliminating measurement errors is derived analytically,and the advantages comparing with the conventional solutions are depicted.Based on the SSEC method analysis,an application of this method for an active power filter(APF)is investigated and the effectiveness and viability of the scheme are demonstrated through the simulation and experimental verifications.展开更多
One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deri...One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.展开更多
The conceptions of the knowledge screen generated by S-rough sets are given: f- screen and - screen , and then puts forward - filter theorem, - filter theorem of knowledge. At last, the applications of knowledge separ...The conceptions of the knowledge screen generated by S-rough sets are given: f- screen and - screen , and then puts forward - filter theorem, - filter theorem of knowledge. At last, the applications of knowledge separation are given according to - screen and - screen.展开更多
In order to analyze the influence of setting error of tool on both tooth profile and contact characteristic of orthogonal face gear drive,the coordinate systems with and without setting error are established.Moreover,...In order to analyze the influence of setting error of tool on both tooth profile and contact characteristic of orthogonal face gear drive,the coordinate systems with and without setting error are established.Moreover,the equations of tooth profile and contact points of face gear drive are derived by envelope principle.According to the equations,the change of tooth profile and the contact points position on face gear are analyzed.The tooth surface and contact points are obtained by numerical simulation.Results show that the tooth profile and contact characteristic of face gear drive are not sensitive to the setting error of tool.展开更多
In reliability analysis,the stress-strength model is often used to describe the life of a component which has a random strength(X)and is subjected to a random stress(Y).In this paper,we considered the problem of estim...In reliability analysis,the stress-strength model is often used to describe the life of a component which has a random strength(X)and is subjected to a random stress(Y).In this paper,we considered the problem of estimating the reliability𝑅𝑅=P[Y<X]when the distributions of both stress and strength are independent and follow exponentiated Pareto distribution.The maximum likelihood estimator of the stress strength reliability is calculated under simple random sample,ranked set sampling and median ranked set sampling methods.Four different reliability estimators under median ranked set sampling are derived.Two estimators are obtained when both strength and stress have an odd or an even set size.The two other estimators are obtained when the strength has an odd size and the stress has an even set size and vice versa.The performances of the suggested estimators are compared with their competitors under simple random sample via a simulation study.The simulation study revealed that the stress strength reliability estimates based on ranked set sampling and median ranked set sampling are more efficient than their competitors via simple random sample.In general,the stress strength reliability estimates based on median ranked set sampling are smaller than the corresponding estimates under ranked set sampling and simple random sample methods.Keywords:Stress-Strength model,ranked set sampling,median ranked set sampling,maximum likelihood estimation,mean square error.corresponding estimates under ranked set sampling and simple random sample methods.展开更多
The geochemical characteristics of two sections—the Permian–Triassic boundary(PTB) Guryul Ravine section, Kashmir Valley, Jammu and Kashmir,India; and the Attargoo section, Spiti Valley, Himachal Pradesh, India—hav...The geochemical characteristics of two sections—the Permian–Triassic boundary(PTB) Guryul Ravine section, Kashmir Valley, Jammu and Kashmir,India; and the Attargoo section, Spiti Valley, Himachal Pradesh, India—have been studied in the context of provenance, paleo-weathering, and plate tectonic setting.These sections represent the siliciclastic sedimentary sequence from the Tethys Himalaya. The PTB siliciclastic sedimentary sequence in these regions primarily consists of sandstones and shales with variable thickness. Present studied sandstones and shales of both sections had chemical index of alteration values between 65 and 74; such values reveal low-to-moderate degree of chemical weathering. The chemical index of weathering in studied samples ranged from 71 to 94, suggesting a minor K-metasomatism effect on these samples. Plagioclase index of alteration in studied sections ranged from 68 to 92, indicating a moderate degree of weathering of plagioclase feldspars. The provenance discriminant function diagram suggests that the detritus involved in the formation of present studied siliciclastic sedimentary rocks fall in quartzose sedimentary and felsic igneous provenances. These sediments were deposited in a passive continental margin plate tectonic setting according to their location on a Si_2 O versus K_2O/Na_2 O tectonic setting diagram.展开更多
An error matrix equation based on error matrix theory was presented in previous research of the error-eliminating theory. The purpose of solving the error matrix equation is to create a decision support on how to swit...An error matrix equation based on error matrix theory was presented in previous research of the error-eliminating theory. The purpose of solving the error matrix equation is to create a decision support on how to switch from bad to good status. A matrix based on error logic is used to express current status u, expectant status u1 and transformation matrix T. It is u, u1, and T that are used to build error matrix equation T (u)= u1. This allows us to find a method whereby bad status “u” changes to good status “u1” by solving the equation. The conversion method that transform from current to expectant status can be obtained from the transformation matrix T. On this basis, this paper proposes a new kind of error matrix equation named “containing-type error matrix equation”. This equation is more suitable for analyzing the realistic question. The method of solving, existence and form of solution for this type of equation have been presented in this paper. This research provides a potential useful new technique for decision analysis.展开更多
文摘Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll workpieces, and types of measurement systems and measurement methods have been developed. However, low measurement efficiency and low measurement accuracy caused by setting errors are the common disadvantages for surface profile measurement of microstructured roll workpieces. In order to shorten the measurement time and enhance the measurement accuracy, a method for self-calibration and compensation of setting errors is proposed for surface profile measurement of microstructured roll workpieces. A measurement system is constructed for the measurement, in which a precision spindle is employed to rotate the roll workpiece and an air-bearing displacement sensor with a micro-stylus probe is employed to scan the microstructured surface of the roll workpiece. The resolution of the displacement sensor is 0.14 nm and that of the rotary encoder of the spindle was 0.15r~. Geometrical and mathematical models are established for analyzing the influences of the setting errors of the roll workpiece and the displacement sensor with respect to the axis of the spindle, including the eccentric error of the roll workpiece, the offset error of the sensor axis and the zero point error of the sensor output. Measurement experiments are carded out on a roll workpiece on which periodic microstructures are a period of 133 i^m along the circumferential direction. Experimental results demonstrate the feasibility of the self-compensation method. The proposed method can be used to detect and compensate the setting errors without using any additional accurate artifact.
文摘This study aims to evaluate inter-fractional set-up errors in patients treated with distinct immobilization equipment (thermoplastic mask, knee-fix and feet-fix, wing board and vac-lok) for four anatomical regions including brain, head and neck (HN), thorax and pelvis. Data of randomly selected 140 patients who were treated for four anatomical regions were obtained using Hi-Art Helical Tomotherapy (HT) system. Pre-treatment planning was based on automatic registration readings of computed tomography (CT) and mega-voltage computed tomography (MVCT) on a daily basis. Distinct immobilization equipment was used for varying anatomical regions. Individual mean set-up error (M), systematic error (Σ), and random error (σ) values were calculated through daily translational and rotational deviation values. The size of translational, systematic and random error was 1.31 - 4.93 mm for brain, 2.28 - 4.88 mm for HN, 4.04 - 9.90 mm for thorax, and 6.34 - 14.68 mm for pelvis. Rotational values were as follows: 0.06° - 0.73° for brain, 0.42° - 0.6° for HN, 0.48° - 1.14° for thorax and 0.65° - 1.05° for pelvis. The highest translational, systematic and random error value was obtained from the pelvic regional. The highest standard and random error value in pitch and roll was produced in the rotational direction of the pelvis (0.05° and 0.71°), while the highest error value in yaw was (1.14°) produced from thorax. Inter-fractional set-up errors were most commonly produced in the pelvis, followed by thorax. Our study results suggest that the highest systematic and random errors are found for thorax and pelvis. Distinct immobilization equipment was important in these results. Safety margins around the clinical target volume (CTV) are changeable for different anatomical regions. A future work could be developed to new equipment for immobilization because of the reduced margins CTV.
基金The foundation project of Chengdu University of Information Technology (No.CRF200502)
文摘A new concept of generalized set-valued strongly accretive mappings in Banach spaces was given and some strong convergence theorems of Ishikawa and Mann iterative process with errors approximation methods by Huang et al. was proved. The results presented in this paper improve and extend the earlier results obtained by Huang et al.
文摘A new conception of generalized set-valued Ф-hemi-contractive mapping in Banach spaces is presented. Some strong convergence theorems of Ishikawa and Mann iterative approximation with errors is proved. The results in this paper improve and extend the earlier results.
基金Fellowship of China National Postdoctoral Program for Innovative Talents(Grant No.BX20200268)Research Project of State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202103)+1 种基金National Natural Science Foundation of China(Grant No.51720105016)Higher Education Discipline Innovation Project(Grant No.B12016).
文摘Precision grinding is a key process for realizing the use of large-aperture aspherical optical elements in laser nuclear fusion devices,large-aperture astronomical telescopes,and high-resolution space cameras.In this study,the arc envelope grinding process of large-aperture aspherical optics is investigated using a CM1500 precision grinding machine with a maximum machinable diameter ofΦ1500 mm.The form error of the aspherical workpiece induced by wheel setting errors is analytically modeled for both parallel and cross grinding.Results show that the form error is more sensitive to the wheel setting error along the feed direction than that along the lateral direction.It is a bilinear function of the feed-direction wheel setting error and the distance to the optical axis.Based on the error function above,a method to determine the wheel setting error is proposed.Subsequently,grinding tests are performed with the wheels aligned accurately.Using a newly proposed partial error compensation method with an appropriate compensation factor,a form error of 3.4μm peak-to-valley(PV)for aΦ400 mm elliptical K9 glass surface is achieved.
基金National Natural Science Foundation of China(No.61273172)
文摘This paper proposes a steady-state errors correction(SSEC)method for eliminating measurement errors.This method is based on the detections of error signal E(s)and output C(s)which generate an expected output R(s).In comparison with the conventional solutions which are based on detecting the expected output R(s)and output C(s)to obtain error signal E(s),the measurement errors are eliminated even the error might be at a significant level.Moreover,it is possible that the individual debugging by regulating the coefficient K for every member of the multiple objectives achieves the optimization of the open loop gain.Therefore,this simple method can be applied to the weak coupling and multiple objectives system,which is usually controlled by complex controller.The principle of eliminating measurement errors is derived analytically,and the advantages comparing with the conventional solutions are depicted.Based on the SSEC method analysis,an application of this method for an active power filter(APF)is investigated and the effectiveness and viability of the scheme are demonstrated through the simulation and experimental verifications.
文摘One of the classical approaches in the analysis of a variational inequality problem is to transform it into an equivalent optimization problem via the notion of gap function. The gap functions are useful tools in deriving the error bounds which provide an estimated distance between a specific point and the exact solution of variational inequality problem. In this paper, we follow a similar approach for set-valued vector quasi variational inequality problems and define the gap functions based on scalarization scheme as well as the one with no scalar parameter. The error bounds results are obtained under fixed point symmetric and locally α-Holder assumptions on the set-valued map describing the domain of solution space of a set-valued vector quasi variational inequality problem.
文摘The conceptions of the knowledge screen generated by S-rough sets are given: f- screen and - screen , and then puts forward - filter theorem, - filter theorem of knowledge. At last, the applications of knowledge separation are given according to - screen and - screen.
基金Supported by the National Natural Science Foundation of China(51105194)the Scientific Research Funding of Nanjing University of Aeronautics and Astronautics(NP2011014)
文摘In order to analyze the influence of setting error of tool on both tooth profile and contact characteristic of orthogonal face gear drive,the coordinate systems with and without setting error are established.Moreover,the equations of tooth profile and contact points of face gear drive are derived by envelope principle.According to the equations,the change of tooth profile and the contact points position on face gear are analyzed.The tooth surface and contact points are obtained by numerical simulation.Results show that the tooth profile and contact characteristic of face gear drive are not sensitive to the setting error of tool.
文摘In reliability analysis,the stress-strength model is often used to describe the life of a component which has a random strength(X)and is subjected to a random stress(Y).In this paper,we considered the problem of estimating the reliability𝑅𝑅=P[Y<X]when the distributions of both stress and strength are independent and follow exponentiated Pareto distribution.The maximum likelihood estimator of the stress strength reliability is calculated under simple random sample,ranked set sampling and median ranked set sampling methods.Four different reliability estimators under median ranked set sampling are derived.Two estimators are obtained when both strength and stress have an odd or an even set size.The two other estimators are obtained when the strength has an odd size and the stress has an even set size and vice versa.The performances of the suggested estimators are compared with their competitors under simple random sample via a simulation study.The simulation study revealed that the stress strength reliability estimates based on ranked set sampling and median ranked set sampling are more efficient than their competitors via simple random sample.In general,the stress strength reliability estimates based on median ranked set sampling are smaller than the corresponding estimates under ranked set sampling and simple random sample methods.Keywords:Stress-Strength model,ranked set sampling,median ranked set sampling,maximum likelihood estimation,mean square error.corresponding estimates under ranked set sampling and simple random sample methods.
文摘The geochemical characteristics of two sections—the Permian–Triassic boundary(PTB) Guryul Ravine section, Kashmir Valley, Jammu and Kashmir,India; and the Attargoo section, Spiti Valley, Himachal Pradesh, India—have been studied in the context of provenance, paleo-weathering, and plate tectonic setting.These sections represent the siliciclastic sedimentary sequence from the Tethys Himalaya. The PTB siliciclastic sedimentary sequence in these regions primarily consists of sandstones and shales with variable thickness. Present studied sandstones and shales of both sections had chemical index of alteration values between 65 and 74; such values reveal low-to-moderate degree of chemical weathering. The chemical index of weathering in studied samples ranged from 71 to 94, suggesting a minor K-metasomatism effect on these samples. Plagioclase index of alteration in studied sections ranged from 68 to 92, indicating a moderate degree of weathering of plagioclase feldspars. The provenance discriminant function diagram suggests that the detritus involved in the formation of present studied siliciclastic sedimentary rocks fall in quartzose sedimentary and felsic igneous provenances. These sediments were deposited in a passive continental margin plate tectonic setting according to their location on a Si_2 O versus K_2O/Na_2 O tectonic setting diagram.
文摘An error matrix equation based on error matrix theory was presented in previous research of the error-eliminating theory. The purpose of solving the error matrix equation is to create a decision support on how to switch from bad to good status. A matrix based on error logic is used to express current status u, expectant status u1 and transformation matrix T. It is u, u1, and T that are used to build error matrix equation T (u)= u1. This allows us to find a method whereby bad status “u” changes to good status “u1” by solving the equation. The conversion method that transform from current to expectant status can be obtained from the transformation matrix T. On this basis, this paper proposes a new kind of error matrix equation named “containing-type error matrix equation”. This equation is more suitable for analyzing the realistic question. The method of solving, existence and form of solution for this type of equation have been presented in this paper. This research provides a potential useful new technique for decision analysis.