The Fine Structure Constant (eFSC) Model attempts to give a classical definition to a magical number that underlies much of quantum physics. The Fine Structure Constant (α) value equal to 137.03599206 represents a di...The Fine Structure Constant (eFSC) Model attempts to give a classical definition to a magical number that underlies much of quantum physics. The Fine Structure Constant (α) value equal to 137.03599206 represents a dimensionless constant that characterizes the strength of the electromagnetic (EM) interaction between subatomic charged particles. Python-generated property counts for the twin prime force F{139/137} show that the adjusted ratio gives a value of α = 137.036. This implies a mathematical framework underlying this constant is based on twin prime numbers and set theory. This study attempts to demonstrate a proof of concept that a hierarchy of fractional twin prime (αII) forces replicates the quantum nature of the universe and is aligned with the Standard Model of Particle Physics. An expanded eFSC Model demonstrates that twin prime forces and their property sets are mathematically viable substitutes for nuclear reactions, as demonstrated for the Beta-minus decay of neutrons into protons. Most significantly, the positive and negative prime numbers define these nuclear reactants and products as positive or negatively charged ions. Furthermore, the eFSC Model provides new insights regarding the hierarchy of EM forces underlying the quantum nature of the universe.展开更多
Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable ...Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable as we point out in this paper. In the paper, we give a general definition of fuzzy cardinal numbers. Based on this definition, we not only obtain a large part of results with re spect to cardinal numbers, but also give a few of new properties of fuzzy cardinal numbers.展开更多
In the complexity and indeterminacy of decision making(DM)environments,orthopair neutrosophic number set(ONNS)presented by Ye et al.can be described by the truth and falsity indeterminacy degrees.Then,ONNS demonstrate...In the complexity and indeterminacy of decision making(DM)environments,orthopair neutrosophic number set(ONNS)presented by Ye et al.can be described by the truth and falsity indeterminacy degrees.Then,ONNS demonstrates its advantages in the indeterminate information expression,aggregations,and DM problems with some indeterminate ranges.However,the existing research lacks some similarity measures between ONNSs.They are indispensable mathematical tools and play a crucial role in DM,pattern recognition,and clustering analysis.Thus,it is necessary to propose some similaritymeasures betweenONNSs to supplement the gap.To solve the issue,this study firstly proposes the p-indeterminate cosine measure,p-indeterminate Dice measure,p-indeterminate Jaccard measure of ONNSs(i.e.,the three parameterized indeterminate vector similarity measures of ONNSs)in vector space.Then,a DMmethod based on the parameterized indeterminate vector similarity measures of ONNSs is developed to solve indeterminate multiple attribute DM problems by choosing different indeterminate degrees of the parameter p,such as the small indeterminate degree(p=0)or the moderate indeterminate degree(p=0.5)or the big indeterminate degree(p=1).Lastly,an actual DM example on choosing a suitable logistics supplier is provided to demonstrate the flexibility and practicability of the developed DM approach in indeterminate DM problems.By comparison with existing relative DM methods,the superiority of this study is that the established DMapproach indicates its flexibility and suitability depending on decision makers’indeterminate degrees(decision risks)in ONNS setting.展开更多
In this paper, we shall present the strong laws of large numbers for fuzzy set-valued random variables in the sense of d<sup>∞</sup><sub>H</sub> . The results are based on the result ...In this paper, we shall present the strong laws of large numbers for fuzzy set-valued random variables in the sense of d<sup>∞</sup><sub>H</sub> . The results are based on the result of single-valued random variables obtained by Taylor [1] and set-valued random variables obtained by Li Guan [2].展开更多
In this paper, we shall represent a strong law of large numbers (SLLN) for weighted sums of set- valued random variables in the sense of the Hausdorff metric dH, based on the result of single-valued random variable ob...In this paper, we shall represent a strong law of large numbers (SLLN) for weighted sums of set- valued random variables in the sense of the Hausdorff metric dH, based on the result of single-valued random variable obtained by Taylor [1].展开更多
Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on th...Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on the mid points of transformed triangular fuzzy numbers is proposed. The proposed similarity measure provides reasonable results not only for the sets available in the literature but also gives very reasonable results, especially for fuzzy sets as well as for most intuitionistic fuzzy sets. To provide supportive evidence, the proposed similarity measure is tested on certain sets available in literature and is also applied to pattern recognition and medical diagnosis problems. It is observed that the proposed similarity measure provides a very intuitive quantification.展开更多
This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139...This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139. The FSC Model introduces a new perspective on the fundamental nature of our universe, showing that α = 137.036 can be calculated from these prime property sets. The Fine Structure Constant, a cornerstone in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD), implies an underlying structure. This study identifies this mathematical framework and demonstrates how the FSC model theory aligns with our current understanding of physics and cosmology. The results unveil a hierarchy of α values for twin prime pairs U{3/2} through U{199/197}. These values, represented by their fraction parts α♊ (e.g., 0.036), define the relative electromagnetic forces driving quantum energy systems. The lower twin prime pairs, such as U{3/2}, exhibit higher EM forces that decrease as the twin pairs increase, turning dark when they drop below the α♊ for light. The results provide classical definitions for Baryonic Matter/Energy, Dark Matter, Dark Energy, and Antimatter but mostly illustrate how the combined α♊ values for three adjacent twin primes, U{7/5/3/2} mirrors the strong nuclear force of gluons holding quarks together.展开更多
In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It ...In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It is proved that a graph G has a fractional 1-factor if bind(G)≥1and has a fractional k-factor if bind(G)≥k−1k. Furthermore, it is showed that both results are best possible in some sense.展开更多
In this paper,the pointwise characterizations of fuzzy mappings are given. Based of this definition,we give a few of new properties of fuzzy cardinal numbers.
A simple recursive algorithm to generate the set of natural numbers, based on Mersenne numbers: M<sub>N</sub> = 2<sup>N</sup> – 1, is used to count the number of prime numbers within the preci...A simple recursive algorithm to generate the set of natural numbers, based on Mersenne numbers: M<sub>N</sub> = 2<sup>N</sup> – 1, is used to count the number of prime numbers within the precise Mersenne natural number intervals: [0;M<sub>N</sub>]. This permits the formulation of an extended twin prime conjecture. Moreover, it is found that the prime numbers subsets contained in Mersenne intervals have cardinalities strongly correlated with the corresponding Mersenne numbers.展开更多
Let G = (V, E) be a simple graph. A set S í V is a dominating set of G, if every vertex in V-S is adjacent to at least one vertex in S. Let be the square of the Path and let denote the family of all dominating se...Let G = (V, E) be a simple graph. A set S í V is a dominating set of G, if every vertex in V-S is adjacent to at least one vertex in S. Let be the square of the Path and let denote the family of all dominating sets of with cardinality i. Let . In this paper, we obtain a recursive formula for . Using this recursive formula, we construct the polynomial, , which we call domination polynomial of and obtain some properties of this polynomial.展开更多
Let G = (V, E) be a simple graph. A set S E(G) is an edge-vertex dominating set of G (or simply an ev-dominating set), if for all vertices v V(G);there exists an edge eS such that e dominates v. Let denote the family ...Let G = (V, E) be a simple graph. A set S E(G) is an edge-vertex dominating set of G (or simply an ev-dominating set), if for all vertices v V(G);there exists an edge eS such that e dominates v. Let denote the family of all ev-dominating sets of with cardinality i. Let . In this paper, we obtain a recursive formula for . Using this recursive formula, we construct the polynomial, , which we call edge-vertex domination polynomial of (or simply an ev-domination polynomial of ) and obtain some properties of this polynomial.展开更多
A subset of the vertex set of a graph is a feedback vertex set of the graph if the resulting graph is a forest after removed the vertex subset from the graph. A polynomial algorithm for finding a minimum feedback vert...A subset of the vertex set of a graph is a feedback vertex set of the graph if the resulting graph is a forest after removed the vertex subset from the graph. A polynomial algorithm for finding a minimum feedback vertex set of a 3-regular simple graph is provided.展开更多
This paper discusses the total irredundance relations between the graph G and its clone-contraction graph H, that is, let H be the clone-contraction graph of G and v1,v2,...,vk be all contraction vertices ofH. IfS is ...This paper discusses the total irredundance relations between the graph G and its clone-contraction graph H, that is, let H be the clone-contraction graph of G and v1,v2,...,vk be all contraction vertices ofH. IfS is a maximal total irredundant set of H such that A = S ∩ {V1,V2,…,Vk} contains as few vertices as possible, then S'= S-A is the maximal total irredundant set of G. Furthermore, we obtain the bound of the total irredundance A(G) number: irt ≤△(G)/2△(G)+1 n, which n is the order of graph G, and △(G) is maximum degree in G.展开更多
Let G =( V,E) be a connected graph and W = { w_1,w_2,…,w_k} be an ordered subset of V( G).For any vertex v ∈V,the locating code of v with respect to W is the k-vector CW( v) = { d( v,w_1),d( v,w_2),…,d( v,w_k) },W ...Let G =( V,E) be a connected graph and W = { w_1,w_2,…,w_k} be an ordered subset of V( G).For any vertex v ∈V,the locating code of v with respect to W is the k-vector CW( v) = { d( v,w_1),d( v,w_2),…,d( v,w_k) },W is said to be a locating set of G if distinct vertices have the distinct locating code,and the locating number of G is defined as: Loc( G) = min{ | W| : W is a locating set of G}.We study the locating set and locating number of a graph G,obtain some bounds for the locating numbers of graphs,and determine the exact value of Loc( G) for some special classes of graphs,such as cycles,wheels,complete t-partite graph and some Cartesian products of paths and cycles. In addition,we also prove that Loc( T) ≥Δ-1 holds for all trees T with maximum degree Δ,and shows a tree T with Loc( T) = Δ-1.展开更多
The concepts of quasi-cardinality, possibility and expectation of a fuzzy set on a measurable set, as a generalization of the quasi-cardinality of a fuzzy set on a finite universe of discourse is proposed. Also some p...The concepts of quasi-cardinality, possibility and expectation of a fuzzy set on a measurable set, as a generalization of the quasi-cardinality of a fuzzy set on a finite universe of discourse is proposed. Also some properties of them are given out and thus some relevant results are elucidated.展开更多
文摘The Fine Structure Constant (eFSC) Model attempts to give a classical definition to a magical number that underlies much of quantum physics. The Fine Structure Constant (α) value equal to 137.03599206 represents a dimensionless constant that characterizes the strength of the electromagnetic (EM) interaction between subatomic charged particles. Python-generated property counts for the twin prime force F{139/137} show that the adjusted ratio gives a value of α = 137.036. This implies a mathematical framework underlying this constant is based on twin prime numbers and set theory. This study attempts to demonstrate a proof of concept that a hierarchy of fractional twin prime (αII) forces replicates the quantum nature of the universe and is aligned with the Standard Model of Particle Physics. An expanded eFSC Model demonstrates that twin prime forces and their property sets are mathematically viable substitutes for nuclear reactions, as demonstrated for the Beta-minus decay of neutrons into protons. Most significantly, the positive and negative prime numbers define these nuclear reactants and products as positive or negatively charged ions. Furthermore, the eFSC Model provides new insights regarding the hierarchy of EM forces underlying the quantum nature of the universe.
文摘Up to now, the study on the cardinal number of fuzzy sets has advanced at on pace since it is very hard to give it an appropriate definition. Althrough for it in [1], it is with some harsh terms and is not reasonable as we point out in this paper. In the paper, we give a general definition of fuzzy cardinal numbers. Based on this definition, we not only obtain a large part of results with re spect to cardinal numbers, but also give a few of new properties of fuzzy cardinal numbers.
文摘In the complexity and indeterminacy of decision making(DM)environments,orthopair neutrosophic number set(ONNS)presented by Ye et al.can be described by the truth and falsity indeterminacy degrees.Then,ONNS demonstrates its advantages in the indeterminate information expression,aggregations,and DM problems with some indeterminate ranges.However,the existing research lacks some similarity measures between ONNSs.They are indispensable mathematical tools and play a crucial role in DM,pattern recognition,and clustering analysis.Thus,it is necessary to propose some similaritymeasures betweenONNSs to supplement the gap.To solve the issue,this study firstly proposes the p-indeterminate cosine measure,p-indeterminate Dice measure,p-indeterminate Jaccard measure of ONNSs(i.e.,the three parameterized indeterminate vector similarity measures of ONNSs)in vector space.Then,a DMmethod based on the parameterized indeterminate vector similarity measures of ONNSs is developed to solve indeterminate multiple attribute DM problems by choosing different indeterminate degrees of the parameter p,such as the small indeterminate degree(p=0)or the moderate indeterminate degree(p=0.5)or the big indeterminate degree(p=1).Lastly,an actual DM example on choosing a suitable logistics supplier is provided to demonstrate the flexibility and practicability of the developed DM approach in indeterminate DM problems.By comparison with existing relative DM methods,the superiority of this study is that the established DMapproach indicates its flexibility and suitability depending on decision makers’indeterminate degrees(decision risks)in ONNS setting.
文摘In this paper, we shall present the strong laws of large numbers for fuzzy set-valued random variables in the sense of d<sup>∞</sup><sub>H</sub> . The results are based on the result of single-valued random variables obtained by Taylor [1] and set-valued random variables obtained by Li Guan [2].
文摘In this paper, we shall represent a strong law of large numbers (SLLN) for weighted sums of set- valued random variables in the sense of the Hausdorff metric dH, based on the result of single-valued random variable obtained by Taylor [1].
文摘Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on the mid points of transformed triangular fuzzy numbers is proposed. The proposed similarity measure provides reasonable results not only for the sets available in the literature but also gives very reasonable results, especially for fuzzy sets as well as for most intuitionistic fuzzy sets. To provide supportive evidence, the proposed similarity measure is tested on certain sets available in literature and is also applied to pattern recognition and medical diagnosis problems. It is observed that the proposed similarity measure provides a very intuitive quantification.
文摘This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139. The FSC Model introduces a new perspective on the fundamental nature of our universe, showing that α = 137.036 can be calculated from these prime property sets. The Fine Structure Constant, a cornerstone in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD), implies an underlying structure. This study identifies this mathematical framework and demonstrates how the FSC model theory aligns with our current understanding of physics and cosmology. The results unveil a hierarchy of α values for twin prime pairs U{3/2} through U{199/197}. These values, represented by their fraction parts α♊ (e.g., 0.036), define the relative electromagnetic forces driving quantum energy systems. The lower twin prime pairs, such as U{3/2}, exhibit higher EM forces that decrease as the twin pairs increase, turning dark when they drop below the α♊ for light. The results provide classical definitions for Baryonic Matter/Energy, Dark Matter, Dark Energy, and Antimatter but mostly illustrate how the combined α♊ values for three adjacent twin primes, U{7/5/3/2} mirrors the strong nuclear force of gluons holding quarks together.
文摘In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It is proved that a graph G has a fractional 1-factor if bind(G)≥1and has a fractional k-factor if bind(G)≥k−1k. Furthermore, it is showed that both results are best possible in some sense.
文摘In this paper,the pointwise characterizations of fuzzy mappings are given. Based of this definition,we give a few of new properties of fuzzy cardinal numbers.
文摘A simple recursive algorithm to generate the set of natural numbers, based on Mersenne numbers: M<sub>N</sub> = 2<sup>N</sup> – 1, is used to count the number of prime numbers within the precise Mersenne natural number intervals: [0;M<sub>N</sub>]. This permits the formulation of an extended twin prime conjecture. Moreover, it is found that the prime numbers subsets contained in Mersenne intervals have cardinalities strongly correlated with the corresponding Mersenne numbers.
文摘Let G = (V, E) be a simple graph. A set S í V is a dominating set of G, if every vertex in V-S is adjacent to at least one vertex in S. Let be the square of the Path and let denote the family of all dominating sets of with cardinality i. Let . In this paper, we obtain a recursive formula for . Using this recursive formula, we construct the polynomial, , which we call domination polynomial of and obtain some properties of this polynomial.
文摘Let G = (V, E) be a simple graph. A set S E(G) is an edge-vertex dominating set of G (or simply an ev-dominating set), if for all vertices v V(G);there exists an edge eS such that e dominates v. Let denote the family of all ev-dominating sets of with cardinality i. Let . In this paper, we obtain a recursive formula for . Using this recursive formula, we construct the polynomial, , which we call edge-vertex domination polynomial of (or simply an ev-domination polynomial of ) and obtain some properties of this polynomial.
文摘A subset of the vertex set of a graph is a feedback vertex set of the graph if the resulting graph is a forest after removed the vertex subset from the graph. A polynomial algorithm for finding a minimum feedback vertex set of a 3-regular simple graph is provided.
基金Supported by the National Natural Science Foundation of China (10571071,10371048)
文摘This paper discusses the total irredundance relations between the graph G and its clone-contraction graph H, that is, let H be the clone-contraction graph of G and v1,v2,...,vk be all contraction vertices ofH. IfS is a maximal total irredundant set of H such that A = S ∩ {V1,V2,…,Vk} contains as few vertices as possible, then S'= S-A is the maximal total irredundant set of G. Furthermore, we obtain the bound of the total irredundance A(G) number: irt ≤△(G)/2△(G)+1 n, which n is the order of graph G, and △(G) is maximum degree in G.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.11361024,61472138)the Provincial Natural Science Foundation(Grant Nos.20171BAB201009,20161BAB202066)the Jiangxi Provincial Science and Technology Project(Grant No.KJLD12067)
文摘Let G =( V,E) be a connected graph and W = { w_1,w_2,…,w_k} be an ordered subset of V( G).For any vertex v ∈V,the locating code of v with respect to W is the k-vector CW( v) = { d( v,w_1),d( v,w_2),…,d( v,w_k) },W is said to be a locating set of G if distinct vertices have the distinct locating code,and the locating number of G is defined as: Loc( G) = min{ | W| : W is a locating set of G}.We study the locating set and locating number of a graph G,obtain some bounds for the locating numbers of graphs,and determine the exact value of Loc( G) for some special classes of graphs,such as cycles,wheels,complete t-partite graph and some Cartesian products of paths and cycles. In addition,we also prove that Loc( T) ≥Δ-1 holds for all trees T with maximum degree Δ,and shows a tree T with Loc( T) = Δ-1.
文摘The concepts of quasi-cardinality, possibility and expectation of a fuzzy set on a measurable set, as a generalization of the quasi-cardinality of a fuzzy set on a finite universe of discourse is proposed. Also some properties of them are given out and thus some relevant results are elucidated.