期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Buckling Optimization of Curved Grid Stiffeners through the Level Set Based Density Method
1
作者 Zhuo Huang Ye Tian +2 位作者 Yifan Zhang Tielin Shi Qi Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期711-733,共23页
Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid s... Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method,where the shape and cross section(including thickness and width)of the stiffeners can be optimized simultaneously.The grid stiffeners are a combination ofmany single stiffenerswhich are projected by the corresponding level set functions.The thickness and width of each stiffener are designed to be independent variables in the projection applied to each level set function.Besides,the path of each single stiffener is described by the zero iso-contour of the level set function.All the single stiffeners are combined together by using the p-norm method to obtain the stiffener grid.The proposed method is validated by several numerical examples to optimize the critical buckling load factor. 展开更多
关键词 STIFFENER buckling optimization shape and cross section level set based density
下载PDF
Bayesian Set Estimation with Alternative Loss Functions: Optimality and Regret Analysis
2
作者 Fulvio De Santis Stefania Gubbiotti 《Open Journal of Statistics》 2023年第2期195-211,共17页
Decision-theoretic interval estimation requires the use of loss functions that, typically, take into account the size and the coverage of the sets. We here consider the class of monotone loss functions that, under qui... Decision-theoretic interval estimation requires the use of loss functions that, typically, take into account the size and the coverage of the sets. We here consider the class of monotone loss functions that, under quite general conditions, guarantee Bayesian optimality of highest posterior probability sets. We focus on three specific families of monotone losses, namely the linear, the exponential and the rational losses whose difference consists in the way the sizes of the sets are penalized. Within the standard yet important set-up of a normal model we propose: 1) an optimality analysis, to compare the solutions yielded by the alternative classes of losses;2) a regret analysis, to evaluate the additional loss of standard non-optimal intervals of fixed credibility. The article uses an application to a clinical trial as an illustrative example. 展开更多
关键词 Bayesian Inference Decision-Theoretic Approach Highest Posterior density Sets Interval Estimation REGRET
下载PDF
A novel SMC-PHD filter based on particle compensation
3
作者 徐从安 何友 +3 位作者 杨富程 简涛 王海鹏 李天梅 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1826-1836,共11页
As a typical implementation of the probability hypothesis density(PHD) filter, sequential Monte Carlo PHD(SMC-PHD) is widely employed in highly nonlinear systems. However, the particle impoverishment problem introduce... As a typical implementation of the probability hypothesis density(PHD) filter, sequential Monte Carlo PHD(SMC-PHD) is widely employed in highly nonlinear systems. However, the particle impoverishment problem introduced by the resampling step, together with the high computational burden problem, may lead to performance degradation and restrain the use of SMC-PHD filter in practical applications. In this work, a novel SMC-PHD filter based on particle compensation is proposed to solve above problems. Firstly, according to a comprehensive analysis on the particle impoverishment problem, a new particle generating mechanism is developed to compensate the particles. Then, all the particles are integrated into the SMC-PHD filter framework. Simulation results demonstrate that, in comparison with the SMC-PHD filter, proposed PC-SMC-PHD filter is capable of overcoming the particle impoverishment problem, as well as improving the processing rate for a certain tracking accuracy in different scenarios. 展开更多
关键词 random finite set(RFS) probability hypothesis density(PHD) particle filter(PF) particle impoverishment particle compensation multi-target tracking(MTT)
下载PDF
A novel variable-lag probability hypothesis density smoother for multi-target tracking
4
作者 Li Yue Zhang Jianqiu Yin Jianjun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期1029-1037,共9页
It is understood that the forward-backward probability hypothesis density (PHD) smoothing algorithms proposed recently can significantly improve state estimation of targets. However, our analyses in this paper show ... It is understood that the forward-backward probability hypothesis density (PHD) smoothing algorithms proposed recently can significantly improve state estimation of targets. However, our analyses in this paper show that they cannot give a good cardinality (i.e., the number of targets) estimate. This is because backward smoothing ignores the effect of temporary track drop- ping caused by forward filtering and/or anomalous smoothing resulted from deaths of targets. To cope with such a problem, a novel PHD smoothing algorithm, called the variable-lag PHD smoother, in which a detection process used to identify whether the filtered cardinality varies within the smooth lag is added before backward smoothing, is developed here. The analytical results show that the proposed smoother can almost eliminate the influences of temporary track dropping and anomalous smoothing, while both the cardinality and the state estimations can significantly be improved. Simulation results on two multi-target tracking scenarios verify the effectiveness of the proposed smoother. 展开更多
关键词 Dynamic models Probability hypothesis density (PHD) Random finite sets Smoother Target tracking
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部