The basic theory and effect of the new farming method of "Fenlong" cultivation which has been included in the main extension technology of Ministry of Agriculture of the People's Republic of China is fully illustra...The basic theory and effect of the new farming method of "Fenlong" cultivation which has been included in the main extension technology of Ministry of Agriculture of the People's Republic of China is fully illustrated for the first time, and it is the fourth set (generation) of farming modes and methods following manpower, animal and mechanical (tractor) farming. It follows the natural law to achieve soil activation, water saving, oxygen increase, warming and desalination through the active use of natural resources like soil, rainfall and solar energy, thereby promoting a new round of natural agricultural production and quality improvement and water con- servation, which has crop yield increase by 10%-30%, quality improvement of 5%, natural precipitation retaining increase by100%. The characteristics and mechanism are the use of spiral drill for one-time completion of the land preparation by drilling vertically to 30-50 cm of soil layer through high speed peeling. After instant high temperature and many fierce impacts, mechanical frictions, it could achieve the multiplication of the number of loose soil, soil physical modification and expansion of the soil nutrients, reservoirs, oxygen, microorganisms ("Four pools"). Fenlong cultivation can give birth to new farming culture and civilization, and it can achieve the physical "desalinized" transformation and utilization of saline soil. The formation of Fenlong green farming technology system makes it possible to invent the farming tools of "serf-propelled Fenlong machinery" that has got the patent, and it is the method for farmland (dry land, paddy field) Fenlong cultivation, saline-alkali soil smash-ridging cultivation and for the abundance of grass ecology on degraded grassland. The application of Fenlong "4+1" (arable, saline-alkali soil, grasslands, Sponge City+rivers) green development in China can achieve the "double safety" of food and living space.展开更多
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr...With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.展开更多
We propose a simple embedding method for computing the eigenvalues and eigenfunctions of the Laplace-Beltrami operator on implicit surfaces.The approach follows an embedding approach for solving the surface eikonal eq...We propose a simple embedding method for computing the eigenvalues and eigenfunctions of the Laplace-Beltrami operator on implicit surfaces.The approach follows an embedding approach for solving the surface eikonal equation.We replace the differential operator on the interface with a typical Cartesian differential operator in the surface neighborhood.Our proposed algorithm is easy to implement and efficient.We will give some two-and three-dimensional numerical examples to demonstrate the effectiveness of our proposed approach.展开更多
For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet...For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.展开更多
The goal of the arterial graft design problem is to find an optimal graft built on an occluded artery, which can be mathematically modeled by a fluid based shape optimization problem. The smoothness of the graft is on...The goal of the arterial graft design problem is to find an optimal graft built on an occluded artery, which can be mathematically modeled by a fluid based shape optimization problem. The smoothness of the graft is one of the important aspects in the arterial graft design problem since it affects the flow of the blood significantly. As an attractive design tool for this problem, level set methods are quite efficient for obtaining better shape of the graft. In this paper, a cubic spline level set method and a radial basis function level set method are designed to solve the arterial graft design problem. In both approaches, the shape of the arterial graft is implicitly tracked by the zero-level contour of a level set function and a high level of smoothness of the graft is achieved. Numerical results show the efficiency of the algorithms in the arterial graft design.展开更多
Some basic problems on the level set methods were discussed, such as the method used to preserve the distance junction , the existence and uniqueness of solution for the level set equations. The main contribution is t...Some basic problems on the level set methods were discussed, such as the method used to preserve the distance junction , the existence and uniqueness of solution for the level set equations. The main contribution is to prove that in a neighborhood of the initial zero level set, the level set equations with the restriction of the distance function have a unique solution, which must be the signed distance function with respect to the evolving surface. Some skillful approaches were used: Noticing that any solution for the original equation was a distance function, the original level set equations were transformed into a simpler alternative form. Moreover, since the new system was not a classical one, the system was transformed into an ordinary one, for which the implicit function method was adopted.展开更多
In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relat...In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relatively smooth level set function with a local optimality condition.The objective of topology optimization is tond an optimal conguration of theuid and solid materials that minimizes power dissipation under a prescribeduid volume fraction constraint.An articial friction force is added to the Navier-Stokes equations to apply the no-slip boundary condition.Although a great deal of work has been carried out for topology optimization ofuidow in recent years,there are few researches on the topology optimization ofuidow with physical body forces.To simulate theuidow in reality,the constant body force(e.g.,gravity)is considered in this paper.Several 2D numerical examples are presented to discuss the relationships between the proposed method with Reynolds number and initial design,and demonstrate the feasibility and superiority of the proposed method in dealing with unstructuredmesh problems.Three 3D numerical examples demonstrate the proposedmethod is feasible in three-dimensional.展开更多
Considering droplet phenomena at low Mach numbers,large differences in the magnitude of the occurring characteristic waves are presented.As acoustic phenomena often play a minor role in such applications,classical exp...Considering droplet phenomena at low Mach numbers,large differences in the magnitude of the occurring characteristic waves are presented.As acoustic phenomena often play a minor role in such applications,classical explicit schemes which resolve these waves suffer from a very restrictive timestep restriction.In this work,a novel scheme based on a specific level set ghost fluid method and an implicit-explicit(IMEX)flux splitting is proposed to overcome this timestep restriction.A fully implicit narrow band around the sharp phase interface is combined with a splitting of the convective and acoustic phenomena away from the interface.In this part of the domain,the IMEX Runge-Kutta time discretization and the high order discontinuous Galerkin spectral element method are applied to achieve high accuracies in the bulk phases.It is shown that for low Mach numbers a significant gain in computational time can be achieved compared to a fully explicit method.Applica-tions to typical droplet dynamic phenomena validate the proposed method and illustrate its capabilities.展开更多
In this paper, we study the following quasilinear equation of choquard type: where A(x,t) is given real functions on R<sup>N</sup> × R and with N ≥ 3, 1 p N, max{N-2p,1} α N, , and ε > 0 is a sm...In this paper, we study the following quasilinear equation of choquard type: where A(x,t) is given real functions on R<sup>N</sup> × R and with N ≥ 3, 1 p N, max{N-2p,1} α N, , and ε > 0 is a small parameter, I<sub>α</sub> is the Riesz potential. We establish for small ε the existence of a sequence of sign-changing solutions concentrating near a given local minimum point of the bounded potential function V by using the method of invariant sets of descending flow, perturbation method and truncation technique. .展开更多
A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Sto...A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Stokes equations and solved through Projection method. The Level set method is used to track the gas-liquid interface boundary. In order to demonstrate the correctness of this new program for simulation of gas-liquid two-phase mold filling in casting, a benchmark filling experiment is simulated (this benchmark test is designed by XU and the filling process is recorded by a 16-mm film camera). The simulated results agree very well with the experimental results, showing that this new program can be used to properly predicate the gas-liquid two-phase mold filling simulation in casting.展开更多
Numerical simulations are performed on the interface with large deformation induced by the interaction between a moving shock and two consecutive bubbles. The high performance of the level set method for multi-materia...Numerical simulations are performed on the interface with large deformation induced by the interaction between a moving shock and two consecutive bubbles. The high performance of the level set method for multi-material interfaces is demonstrated. Discontinuous Galerkin finite element method is used to solve Euleri- an equations. And the fifth-order weighted essentially non-oscillatory (WENO) scheme is used to solve the level set equation for capturing multi-material interfaces. The ghost fluid method is used to deal with the interfacial boundary condition. Results are obtained for two bubble interacting with a moving shock. The contours of the constant density and the pressure at different time are given. In the computational domain, three different cases are considered, i.e. two helium bubbles, a helium bubble followed by an R22 bubble in the direction of the moving shock, and an R22 bubble followed by a helium bubble. Computational results indicate that multi-mate- rial interfaces can be properly captured by the level set method. Therefore, for problems involving the flow of three different materials with two different interfaces, each interface separating two different materials can be similarly handled.展开更多
Combining the vector level set model,the shape sensitivity analysis theory with the gradient projection technique,a level set method for topology optimization with multi-constraints and multi-materials is presented in...Combining the vector level set model,the shape sensitivity analysis theory with the gradient projection technique,a level set method for topology optimization with multi-constraints and multi-materials is presented in this paper.The method implicitly describes structural material in- terfaces by the vector level set and achieves the optimal shape and topology through the continuous evolution of the material interfaces in the structure.In order to increase computational efficiency for a fast convergence,an appropriate nonlinear speed mapping is established in the tangential space of the active constraints.Meanwhile,in order to overcome the numerical instability of general topology opti- mization problems,the regularization with the mean curvature flow is utilized to maintain the interface smoothness during the optimization process.The numerical examples demonstrate that the approach possesses a good flexibility in handling topological changes and gives an interface representation in a high fidelity,compared with other methods based on explicit boundary variations in the literature.展开更多
A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic s...A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation.The validity of the numerical method is verified by a benchmark problem.The melt interface evolution versus time is captured and the physical quantities such as temperature,velocity and pressure at each time step are obtained with corresponding analysis.A"frozen skin"layer with the thickness increasing versus time during the injection process is found.The fact that the"frozen skin"layer can be reduced by increasing the injection velocity is numerically verified.The fountain flow phenomenon near the melt interface is also captured.Moreover,comparisons with the non-isothermal Newtonian case show that the curvatures of the interface arcs and the pressure contours near the horizontal mid-line of the cavity for the non-Newtonian pseudoplastic case is larger than that for the Newtonian case.The velocity profiles are different at different positions for the non-Newtonian pseudoplastic case,while in the case of Newtonian flow the velocity profiles are parabolic and almost the same at different positions.展开更多
Pore structure of porous media, including pore size and topology, is rather complex. In immiscible twophase displacement process, the capillary force affected by pore size dominates the two-phase flow in the porous me...Pore structure of porous media, including pore size and topology, is rather complex. In immiscible twophase displacement process, the capillary force affected by pore size dominates the two-phase flow in the porous media, affecting displacement results. Direct observation of the flow patterns in the porous media is difficult, and therefore knowledge about the two-phase displacement flow is insufficient. In this paper, a two-dimensional(2D) pore structure was extracted from a sandstone sample, and the flow process that CO_2 displaces resident brine in the extracted pore structure was simulated using the Navier eStokes equation combined with the conservative level set method. The simulation results reveal that the pore throat is a crucial factor for determining CO_2 displacement process in the porous media. The two-phase meniscuses in each pore throat were in a self-adjusting process. In the displacement process,CO_2 preferentially broke through the maximum pore throat. Before breaking through the maximum pore throat, the pressure of CO_2 continually increased, and the curvature and position of two-phase interfaces in the other pore throats adjusted accordingly. Once the maximum pore throat was broken through by the CO_2, the capillary force in the other pore throats released accordingly; subsequently, the interfaces withdrew under the effect of capillary fore, preparing for breaking through the next pore throat.Therefore, the two-phase displacement in CO_2 injection is accompanied by the breaking through and adjusting of the two-phase interfaces.展开更多
A level set method of non-uniform grids is used to simulate the whole evolution of a cavitation bubble, including its growth, collapse and rebound near a rigid wall. Single-phase Navier-Stokes equation in the liquid r...A level set method of non-uniform grids is used to simulate the whole evolution of a cavitation bubble, including its growth, collapse and rebound near a rigid wall. Single-phase Navier-Stokes equation in the liquid region is solved by MAC projection algorithm combined with second-order ENO scheme for the advection terms. The moving inter-face is captured by the level set function, and the interface velocity is resolved by "one-side" velocity extension from the liquid region to the bubble region, complementing the second-order weighted least squares method across the interface and projection inside bubble. The use of non-uniform grid overcomes the difficulty caused by the large computational domain and very small bubble size. The computation is very stable without suffering from large flow-field gradients, and the results are in good agreements with other studies. The bubble interface kinematics, dynamics and its effect on the wall are highlighted, which shows that the code can effectively capture the "shock wave"-like pressure and velocity at jet impact, toroidal bubble, and complicated pressure structure with peak, plateau and valley in the later stage of bubble oscillating.展开更多
Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single...Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single classifier learn much of occluding background information which results in the decrease of tracking performance, and eventually lead to the failure of the tracking algorithm. This paper presents a new correlative classifiers approach to address the above problem. Our idea is to derive a group of correlative classifiers based on sample set method. Then we propose strategy to establish the classifiers and to query the suitable classifiers for the next frame tracking. In order to deal with nonlinear problem, particle filter is adopted and integrated with sample set method. For choosing the target from candidate particles, we define a similarity measurement between particles and sample set. The proposed sample set method includes the following steps. First, we cropped positive samples set around the target and negative samples set far away from the target. Second, we extracted average Haar-like feature from these samples and calculate their statistical characteristic which represents the target model. Third, we define the similarity measurement based on the statistical characteristic of these two sets to judge the similarity between candidate particles and target model. Finally, we choose the largest similarity score particle as the target in the new frame. A number of experiments show the robustness and efficiency of the proposed approach when compared with other state-of-the-art trackers.展开更多
A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interfac...A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interface tracking,in which common intersection may be traversed by multiple interfaces.By using the adaptive mesh technique and the MPLS method,mesh resolution is updated automatically with time according to flow characteristics in the modeling process with higher resolution around the free surface and the solid boundary and lower resolution in less important area.The model has good performance in saving computer memory and CPU time and is validated by computational examples of small amplitude wave,second-order Stokes wave and cnoidal wave.Computational results also indicate that standing wave and wave overtopping are also reasonably simulated by the model.展开更多
Segmenting a complex 3D surface model into some visually meaningful sub-parts is one of the fundamental problems in digital geometry processing. In this paper, a novel segmentation approach of point-sampled surfaces i...Segmenting a complex 3D surface model into some visually meaningful sub-parts is one of the fundamental problems in digital geometry processing. In this paper, a novel segmentation approach of point-sampled surfaces is proposed, which is based on the level set evolution scheme. To segment the model so as to align the patch boundaries with high curvature zones, the driven speed function for the zero level set inside narrow band is defined by the extended curvature field, which approaches zero speed as the propagating front approaches high curvature zone. The effectiveness of the proposed approach is demonstrated by our ex- perimental results. Furthermore, two applications of model segmentation are illustrated, such as piecewise parameterization and local editing for point-sampled geometry.展开更多
基金Supported by the National Key Technology R&D Program of China(2014BAD06B05)the Major Project of Science and Technology of Guangxi(2017AA22015)~~
文摘The basic theory and effect of the new farming method of "Fenlong" cultivation which has been included in the main extension technology of Ministry of Agriculture of the People's Republic of China is fully illustrated for the first time, and it is the fourth set (generation) of farming modes and methods following manpower, animal and mechanical (tractor) farming. It follows the natural law to achieve soil activation, water saving, oxygen increase, warming and desalination through the active use of natural resources like soil, rainfall and solar energy, thereby promoting a new round of natural agricultural production and quality improvement and water con- servation, which has crop yield increase by 10%-30%, quality improvement of 5%, natural precipitation retaining increase by100%. The characteristics and mechanism are the use of spiral drill for one-time completion of the land preparation by drilling vertically to 30-50 cm of soil layer through high speed peeling. After instant high temperature and many fierce impacts, mechanical frictions, it could achieve the multiplication of the number of loose soil, soil physical modification and expansion of the soil nutrients, reservoirs, oxygen, microorganisms ("Four pools"). Fenlong cultivation can give birth to new farming culture and civilization, and it can achieve the physical "desalinized" transformation and utilization of saline soil. The formation of Fenlong green farming technology system makes it possible to invent the farming tools of "serf-propelled Fenlong machinery" that has got the patent, and it is the method for farmland (dry land, paddy field) Fenlong cultivation, saline-alkali soil smash-ridging cultivation and for the abundance of grass ecology on degraded grassland. The application of Fenlong "4+1" (arable, saline-alkali soil, grasslands, Sponge City+rivers) green development in China can achieve the "double safety" of food and living space.
基金the National Key Research and Development Program of China(Grant Number 2021YFB1714600)the National Natural Science Foundation of China(Grant Number 52075195)the Fundamental Research Funds for the Central Universities,China through Program No.2172019kfyXJJS078.
文摘With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.
基金supported in part by the Hong Kong RGC 16302223.
文摘We propose a simple embedding method for computing the eigenvalues and eigenfunctions of the Laplace-Beltrami operator on implicit surfaces.The approach follows an embedding approach for solving the surface eikonal equation.We replace the differential operator on the interface with a typical Cartesian differential operator in the surface neighborhood.Our proposed algorithm is easy to implement and efficient.We will give some two-and three-dimensional numerical examples to demonstrate the effectiveness of our proposed approach.
文摘For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.
基金Supported by National Foundation of Natural Science(11471092)Natural Science Foundation of Zhejiang Province(LZ13A010003)Foundation of Zhejiang Educational Committee(Y201121891)
文摘The goal of the arterial graft design problem is to find an optimal graft built on an occluded artery, which can be mathematically modeled by a fluid based shape optimization problem. The smoothness of the graft is one of the important aspects in the arterial graft design problem since it affects the flow of the blood significantly. As an attractive design tool for this problem, level set methods are quite efficient for obtaining better shape of the graft. In this paper, a cubic spline level set method and a radial basis function level set method are designed to solve the arterial graft design problem. In both approaches, the shape of the arterial graft is implicitly tracked by the zero-level contour of a level set function and a high level of smoothness of the graft is achieved. Numerical results show the efficiency of the algorithms in the arterial graft design.
基金the National Natural Science Foundation of China (6001161942, 60203003)
文摘Some basic problems on the level set methods were discussed, such as the method used to preserve the distance junction , the existence and uniqueness of solution for the level set equations. The main contribution is to prove that in a neighborhood of the initial zero level set, the level set equations with the restriction of the distance function have a unique solution, which must be the signed distance function with respect to the evolving surface. Some skillful approaches were used: Noticing that any solution for the original equation was a distance function, the original level set equations were transformed into a simpler alternative form. Moreover, since the new system was not a classical one, the system was transformed into an ordinary one, for which the implicit function method was adopted.
基金supported by the National Natural Science Foundation of China (Grant No.12072114)the National Key Research and Development Plan (Grant No.2020YFB1709401)the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology (2021B1212040003).
文摘In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relatively smooth level set function with a local optimality condition.The objective of topology optimization is tond an optimal conguration of theuid and solid materials that minimizes power dissipation under a prescribeduid volume fraction constraint.An articial friction force is added to the Navier-Stokes equations to apply the no-slip boundary condition.Although a great deal of work has been carried out for topology optimization ofuidow in recent years,there are few researches on the topology optimization ofuidow with physical body forces.To simulate theuidow in reality,the constant body force(e.g.,gravity)is considered in this paper.Several 2D numerical examples are presented to discuss the relationships between the proposed method with Reynolds number and initial design,and demonstrate the feasibility and superiority of the proposed method in dealing with unstructuredmesh problems.Three 3D numerical examples demonstrate the proposedmethod is feasible in three-dimensional.
基金support provided by the Deutsche Forschun-gsgemeinschaft(DFG,German Research Foundation)through the project GRK 2160/1“Droplet Interaction Technologies”and through the project no.457811052
文摘Considering droplet phenomena at low Mach numbers,large differences in the magnitude of the occurring characteristic waves are presented.As acoustic phenomena often play a minor role in such applications,classical explicit schemes which resolve these waves suffer from a very restrictive timestep restriction.In this work,a novel scheme based on a specific level set ghost fluid method and an implicit-explicit(IMEX)flux splitting is proposed to overcome this timestep restriction.A fully implicit narrow band around the sharp phase interface is combined with a splitting of the convective and acoustic phenomena away from the interface.In this part of the domain,the IMEX Runge-Kutta time discretization and the high order discontinuous Galerkin spectral element method are applied to achieve high accuracies in the bulk phases.It is shown that for low Mach numbers a significant gain in computational time can be achieved compared to a fully explicit method.Applica-tions to typical droplet dynamic phenomena validate the proposed method and illustrate its capabilities.
文摘In this paper, we study the following quasilinear equation of choquard type: where A(x,t) is given real functions on R<sup>N</sup> × R and with N ≥ 3, 1 p N, max{N-2p,1} α N, , and ε > 0 is a small parameter, I<sub>α</sub> is the Riesz potential. We establish for small ε the existence of a sequence of sign-changing solutions concentrating near a given local minimum point of the bounded potential function V by using the method of invariant sets of descending flow, perturbation method and truncation technique. .
基金Projects(51304145,51301118,51304152)supported by the National Natural Science Foundation of ChinaProject(2013JQ7016)supported by the Natural Science Foundation of Shannxi Province,China+1 种基金Project(2013T002)supported by the Science Foundation of Taiyuan University of Technology,ChinaProject(2013JK0904)supported by Shannxi Provincial Education Department,China
文摘A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Stokes equations and solved through Projection method. The Level set method is used to track the gas-liquid interface boundary. In order to demonstrate the correctness of this new program for simulation of gas-liquid two-phase mold filling in casting, a benchmark filling experiment is simulated (this benchmark test is designed by XU and the filling process is recorded by a 16-mm film camera). The simulated results agree very well with the experimental results, showing that this new program can be used to properly predicate the gas-liquid two-phase mold filling simulation in casting.
基金Supported by the National Natural Science Foundation of China(10476011)~~
文摘Numerical simulations are performed on the interface with large deformation induced by the interaction between a moving shock and two consecutive bubbles. The high performance of the level set method for multi-material interfaces is demonstrated. Discontinuous Galerkin finite element method is used to solve Euleri- an equations. And the fifth-order weighted essentially non-oscillatory (WENO) scheme is used to solve the level set equation for capturing multi-material interfaces. The ghost fluid method is used to deal with the interfacial boundary condition. Results are obtained for two bubble interacting with a moving shock. The contours of the constant density and the pressure at different time are given. In the computational domain, three different cases are considered, i.e. two helium bubbles, a helium bubble followed by an R22 bubble in the direction of the moving shock, and an R22 bubble followed by a helium bubble. Computational results indicate that multi-mate- rial interfaces can be properly captured by the level set method. Therefore, for problems involving the flow of three different materials with two different interfaces, each interface separating two different materials can be similarly handled.
基金The project supported by the National Natural Science Foundation of China (59805001,10332010) and Key Science and Technology Research Project of Ministry of Education of China (No.104060)
文摘Combining the vector level set model,the shape sensitivity analysis theory with the gradient projection technique,a level set method for topology optimization with multi-constraints and multi-materials is presented in this paper.The method implicitly describes structural material in- terfaces by the vector level set and achieves the optimal shape and topology through the continuous evolution of the material interfaces in the structure.In order to increase computational efficiency for a fast convergence,an appropriate nonlinear speed mapping is established in the tangential space of the active constraints.Meanwhile,in order to overcome the numerical instability of general topology opti- mization problems,the regularization with the mean curvature flow is utilized to maintain the interface smoothness during the optimization process.The numerical examples demonstrate that the approach possesses a good flexibility in handling topological changes and gives an interface representation in a high fidelity,compared with other methods based on explicit boundary variations in the literature.
基金Supported by the National Natural Science Foundation of China(10871159) the National Basic Research Program of China(2005CB321704)
文摘A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation.The validity of the numerical method is verified by a benchmark problem.The melt interface evolution versus time is captured and the physical quantities such as temperature,velocity and pressure at each time step are obtained with corresponding analysis.A"frozen skin"layer with the thickness increasing versus time during the injection process is found.The fact that the"frozen skin"layer can be reduced by increasing the injection velocity is numerically verified.The fountain flow phenomenon near the melt interface is also captured.Moreover,comparisons with the non-isothermal Newtonian case show that the curvatures of the interface arcs and the pressure contours near the horizontal mid-line of the cavity for the non-Newtonian pseudoplastic case is larger than that for the Newtonian case.The velocity profiles are different at different positions for the non-Newtonian pseudoplastic case,while in the case of Newtonian flow the velocity profiles are parabolic and almost the same at different positions.
基金funded by Key Laboratory of Coal-based CO_2 Capture and Geological Storage,Jiangsu Province,ChinaUS Advanced Coal Technology Consortium(No.2013 DFB60140-08)
文摘Pore structure of porous media, including pore size and topology, is rather complex. In immiscible twophase displacement process, the capillary force affected by pore size dominates the two-phase flow in the porous media, affecting displacement results. Direct observation of the flow patterns in the porous media is difficult, and therefore knowledge about the two-phase displacement flow is insufficient. In this paper, a two-dimensional(2D) pore structure was extracted from a sandstone sample, and the flow process that CO_2 displaces resident brine in the extracted pore structure was simulated using the Navier eStokes equation combined with the conservative level set method. The simulation results reveal that the pore throat is a crucial factor for determining CO_2 displacement process in the porous media. The two-phase meniscuses in each pore throat were in a self-adjusting process. In the displacement process,CO_2 preferentially broke through the maximum pore throat. Before breaking through the maximum pore throat, the pressure of CO_2 continually increased, and the curvature and position of two-phase interfaces in the other pore throats adjusted accordingly. Once the maximum pore throat was broken through by the CO_2, the capillary force in the other pore throats released accordingly; subsequently, the interfaces withdrew under the effect of capillary fore, preparing for breaking through the next pore throat.Therefore, the two-phase displacement in CO_2 injection is accompanied by the breaking through and adjusting of the two-phase interfaces.
基金the National Natural Science Foundation of China(10272032 and 10672043).
文摘A level set method of non-uniform grids is used to simulate the whole evolution of a cavitation bubble, including its growth, collapse and rebound near a rigid wall. Single-phase Navier-Stokes equation in the liquid region is solved by MAC projection algorithm combined with second-order ENO scheme for the advection terms. The moving inter-face is captured by the level set function, and the interface velocity is resolved by "one-side" velocity extension from the liquid region to the bubble region, complementing the second-order weighted least squares method across the interface and projection inside bubble. The use of non-uniform grid overcomes the difficulty caused by the large computational domain and very small bubble size. The computation is very stable without suffering from large flow-field gradients, and the results are in good agreements with other studies. The bubble interface kinematics, dynamics and its effect on the wall are highlighted, which shows that the code can effectively capture the "shock wave"-like pressure and velocity at jet impact, toroidal bubble, and complicated pressure structure with peak, plateau and valley in the later stage of bubble oscillating.
基金supported by the National Science Foundation of China(61472289)National Key Research and Development Project(2016YFC0106305)The Key Technology R&D Program of Hubei Provence(2014BAA153)
文摘Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single classifier learn much of occluding background information which results in the decrease of tracking performance, and eventually lead to the failure of the tracking algorithm. This paper presents a new correlative classifiers approach to address the above problem. Our idea is to derive a group of correlative classifiers based on sample set method. Then we propose strategy to establish the classifiers and to query the suitable classifiers for the next frame tracking. In order to deal with nonlinear problem, particle filter is adopted and integrated with sample set method. For choosing the target from candidate particles, we define a similarity measurement between particles and sample set. The proposed sample set method includes the following steps. First, we cropped positive samples set around the target and negative samples set far away from the target. Second, we extracted average Haar-like feature from these samples and calculate their statistical characteristic which represents the target model. Third, we define the similarity measurement based on the statistical characteristic of these two sets to judge the similarity between candidate particles and target model. Finally, we choose the largest similarity score particle as the target in the new frame. A number of experiments show the robustness and efficiency of the proposed approach when compared with other state-of-the-art trackers.
基金The Innovative Research Groups of the National Natural Science Foundation of China under contract No.51021004the National Natural Science Foundation for Youth of China under contract No. 51109018+2 种基金the Open Foundation of Water & Sediment Science and Water Hazard Prevention Hunan Provincial Key Laboratory under contract No. 2011SS05the Open Foundation of Port,Coastal and offshore Engineering Hunan Provincial Key Discipline under contract No. 20110815001the Open Foundation of State Key Laboratory of Hydraulic Engineering Simulation and Safety under contract No.HSSKLTJU-201208.
文摘A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interface tracking,in which common intersection may be traversed by multiple interfaces.By using the adaptive mesh technique and the MPLS method,mesh resolution is updated automatically with time according to flow characteristics in the modeling process with higher resolution around the free surface and the solid boundary and lower resolution in less important area.The model has good performance in saving computer memory and CPU time and is validated by computational examples of small amplitude wave,second-order Stokes wave and cnoidal wave.Computational results also indicate that standing wave and wave overtopping are also reasonably simulated by the model.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312101)the National Natural Science Foundation of China (Nos. 60503056, 60373036, 60333010)the Education Department of Zhejiang Province, China (No. 20060797)
文摘Segmenting a complex 3D surface model into some visually meaningful sub-parts is one of the fundamental problems in digital geometry processing. In this paper, a novel segmentation approach of point-sampled surfaces is proposed, which is based on the level set evolution scheme. To segment the model so as to align the patch boundaries with high curvature zones, the driven speed function for the zero level set inside narrow band is defined by the extended curvature field, which approaches zero speed as the propagating front approaches high curvature zone. The effectiveness of the proposed approach is demonstrated by our ex- perimental results. Furthermore, two applications of model segmentation are illustrated, such as piecewise parameterization and local editing for point-sampled geometry.