The deterministic lateral displacement (DLD) is an important method used to sort particles and cells of different sizes. In this paper, the flexible cell sorting with the DLD method is studied by using a numerical mod...The deterministic lateral displacement (DLD) is an important method used to sort particles and cells of different sizes. In this paper, the flexible cell sorting with the DLD method is studied by using a numerical model based on the immersed boundary-lattice Boltzmann method (IB-LBM). In this model, the fluid motion is solved by the LBM, and the cell membrane-fluid interaction is modeled with the LBM. The proposed model is validated by simulating the rigid particle sorted with the DLD method, and the results are found in good agreement with those measured in experiments. We first study the effect of flexibility on a single cell and multiple cells continuously going through a DLD device. It is found that the cell flexibility can significantly affect the cell path, which means the flexibility could have significant effects on the continuous cell sorting by the DLD method. The sorting characteristics of white blood cells and red blood cells are further studied by varying the spatial distribution of cylinder arrays and the initial cell-cell distance. The numerical results indicate that a well concentrated cell sorting can be obtained under a proper arrangement of cylinder arrays and a large enough initial cell-cell distance.展开更多
The method proposed in this paper is based on the fact that the damage in different types of structural members has distinctive influence on the structural stiffness. The intrinsic mechanical property of the structure...The method proposed in this paper is based on the fact that the damage in different types of structural members has distinctive influence on the structural stiffness. The intrinsic mechanical property of the structure is tapped and fully utilized for damage detection. The simplified model of the flexibility of frames treats the individual storeys as springs in series and the frame as an equivalent column. It fully considers the main deformation of all beams and columns in the frame. The deformation property of the simplified model accorded well with that of the actual frame model. The obtained increment of lateral displacement change (IOLDC) at the storey level was found to be very sensitive to the local damage in the frame. A damage detection method is pro- posed using the IOLDCs as the damage identification parameters. Numerical examples demonstrate the potential applicability of this method.展开更多
The separation and detection of particles in suspension are essential for a wide spectrum of applications including medical diagnostics.In this field,microfluidic deterministic lateral displacement(DLD)holds a promise...The separation and detection of particles in suspension are essential for a wide spectrum of applications including medical diagnostics.In this field,microfluidic deterministic lateral displacement(DLD)holds a promise due to the ability of continuous separation of particles by size,shape,deformability,and electrical properties with high resolution.DLD is a passive microfluidic separation technique that has been widely implemented for various bioparticle separations from blood cells to exosomes.DLD techniques have been previously reviewed in 2014.Since then,the field has matured as several physics of DLD have been updated,new phenomena have been discovered,and various designs have been presented to achieve a higher separation performance and throughput.Furthermore,some recent progress has shown new clinical applications and ability to use the DLD arrays as a platform for biomolecules detection.This review provides a thorough discussion on the recent progress in DLD with the topics based on the fundamental studies on DLD models and applications for particle separation and detection.Furthermore,current challenges and potential solutions of DLD are also discussed.We believe that a comprehensive understanding on DLD techniques could significantly contribute toward the advancements in the field for various applications.In particular,the rapid,low-cost,and high-throughput particle separation and detection with DLD have a tremendous impact for point-of-care diagnostics.展开更多
Pull-apart basins of three scales were found along the Haiyuan fault zone. The largest one is more than 50km long, named Laolongwan basin developed in Miocene. A model was built to calculate the amount of pull-apart o...Pull-apart basins of three scales were found along the Haiyuan fault zone. The largest one is more than 50km long, named Laolongwan basin developed in Miocene. A model was built to calculate the amount of pull-apart of an extensional basin. Parameters used in calculation include thickness and length of deposition and depth of detachment. The results of calculation show that the amount of pull-apart of the Laolongwan Basin is about 30 km. Based on previous studies and calculating by using the average slip rate method, amount of pull-apart of the other two smaller basins are 22 km and 8 km, respectively. Thus, the total displacement of strike-slip along the Haiyuan fault zone is about 60 km, which is close to the offset of the Yellow River from Jingtai to Jingyuan.展开更多
In order to investigate the influence of complex conditions of in-situ surrounding rocks on the settlement behavior of nubbly coal mine waste subjected to high gravity pressure,four kinds of loading chambers made of d...In order to investigate the influence of complex conditions of in-situ surrounding rocks on the settlement behavior of nubbly coal mine waste subjected to high gravity pressure,four kinds of loading chambers made of different similar materials with different elastic moduli in experiments were used to simulate the deformation features of in-site rocks,including soft,moderate hardness,hard and extra-hard rocks. The results show that all the settlement-axial load (or axial strain-stress) curves obtained under four different surrounding rock conditions present power-exponential function feature. The final settlement of coal mine waste under the same axial load is closely related to the lumpiness gradations and the deformation behavior of chamber materials used to simulate behaviors of different in-situ surrounding rocks. In the same surrounding rock condition,the final settlement under the same maximum axial load decreases with the decrease of the proportion of larger gradation of coal mine waste. While for the same lumpiness gradation case,the settlement increases with the decrease of elastic modulus of simulated surrounding rocks and the lateral pressure induced by axial load increases with the increase of elastic modulus of loading chambers that are used to simulate different surrounding rocks. The test results also reveal that both the compaction curve and lateral pressure curve show a three-stage behavior,and the duration of each stage,which is closely related to gradations and the deformation feature of loading chamber materials,decreases with the increase of the proportion of the small size of coal mine waste and elastic modulus of the simulated rock materials.展开更多
The mechanism of long-short composite piled raft foundation was discussed. Assuming the relationship between shear stress and shear strain of the surrounding soil was elasto-plastic, shear displacement method was empl...The mechanism of long-short composite piled raft foundation was discussed. Assuming the relationship between shear stress and shear strain of the surrounding soil was elasto-plastic, shear displacement method was employed to establish the different explicit relational equations between the load and the displacement at the top of pile in either elastic or elasto-plastic period. Then Mylonakis & Gazetas model was introduced to simulate the interaction between two piles or between piles and soil. Considering the effect of cushion, the flexible coefficients of interaction were provided, With the addition of a relevant program, the settlement calculation for long-short composite piled raft foundation was developed which could be used to account for the interaction of piles, soil and cushion. Finally, the calculation method was used to analyze an engineering example. The calculated value of settlement is 10.2 ram, which is close to the observed value 8.8 mm.展开更多
Urban subway tunnel construction inevitably disturbs the surrounding rock and causes the deformation of existing subway structures. Dynamic predictions of the tunnel horizontal displacement, tunnel ballast settlement,...Urban subway tunnel construction inevitably disturbs the surrounding rock and causes the deformation of existing subway structures. Dynamic predictions of the tunnel horizontal displacement, tunnel ballast settlement, and tunnel differential settlement are important for ensuring the safety of buildings and tunnels. First, based on the Hangzhou Metro project, we analyzed the influence of construction on the deformation of existing subway structures and the difficulties and key points in monitoring. Then, a deformation prediction model, based on a back propagation(BP) neural network, was established with massive monitoring data. In particular, we analyzed the influence of four structures of the BP neural network on prediction performance, i.e., single input–single hidden layer–single output, multiple inputs–single hidden layer–single output, single input–double hidden layers–single output, and multiple inputs–double hidden layers–single output, and verified them using measured data.展开更多
Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankme...Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankments was proposed. In order to validate the proposed method, a full-scale high-speed railway embankment(HSRE) with four instrumented subsections over medium compressibility silty clay was constructed in three stages. The soil profile, construction procedure and monitoring of settlements and lateral displacements of the four test sections were described. The field deformation analysis results show that 1) the combined reinforcement of CFG piles and geosynthetic layer perform well in terms of reducing lateral displacements; 2) the development of lateral displacements lags behind the increase of fill load, which can be attributed to the vertical load transfer mechanism of the pile foundation; and 3) pile length has a dominant effect on the stress distribution proportion between piles and surrounding soils. The comparison between predicted and experimental results suggests that the proposed analytical solution and the back analysis-based method are capable of reasonably estimating the lateral deformation and the stress concentration ratio, respectively, if the appropriate soil elastic modulus is chosen.展开更多
This study experimentally and numerically investigated the effect of pulsatile flow of different frequencies and outflow resistance on wall deformation in a lateral aneurysm.A method for constructing a flexible aneury...This study experimentally and numerically investigated the effect of pulsatile flow of different frequencies and outflow resistance on wall deformation in a lateral aneurysm.A method for constructing a flexible aneurysm model was developed,and a self-designed piston pump was used to provide the pulsatile flow conditions.A fluid-structure interaction simulation was applied for comparison with and analysis of experimental findings.The maximum wall displacement oscillation increased as the pulsation frequency and outflow resistance increased,especially at the aneurysm dome.There is an obvious circular motion of the vortex center accompanying the periodic inflow fluctuation,and the pressure at the aneurysm dome at peak flow increased as the pulsatile flow frequency and terminal flow resistance increased.These results could explain why abnormal blood flow with high frequency and high outflow resistance is one of the risk factors for aneurysm rupture.展开更多
The theory of metal plastic deformation is an important part of the strip shape control theories. In order to control the shape and gauge accurately during cold thin strip rolling, the mechanism of the metal lateral f...The theory of metal plastic deformation is an important part of the strip shape control theories. In order to control the shape and gauge accurately during cold thin strip rolling, the mechanism of the metal lateral flow must be revealed clearly. Therefore, the lateral displacement of thin strip was studied by the grid method. Those grids with a line thickness of 10 μm and clear boundaries were successfully manufactured on the strip surface using lithography. Then, the effects of reduction, front and back tension, and taper angle of the first intermediate roll on the metal lateral flow were studied. The strip shape was calculated with and without considering the lateral displacement; furthermore, the calculations were compared with the measured results. The results show that the calculations with considering the lateral displacement are closer to the measured results. In addition, the comparison of finite element analysis results with the experimental results indicates that the test method was reliable.展开更多
Rapid,sensitive,point-of-care detection of pathogenic bacteria is important for food safety.In this study,we developed a novel quantum dot nanobeads-labelled lateral flow immunoassay strip(QBs-labelled LFIAS)combined ...Rapid,sensitive,point-of-care detection of pathogenic bacteria is important for food safety.In this study,we developed a novel quantum dot nanobeads-labelled lateral flow immunoassay strip(QBs-labelled LFIAS)combined with strand displacement loop-mediated isothermal amplification(SD-LAMP)for quantitative Salmonella Typhimurium(ST)detection.Quantum dot nanobeads(QBs)served as fluorescence reporters,providing good detection efficiency.The customizable strand displacement(SD)probe was used in LAMP to improve the specificity of the method and prevent by-product capture.Detection was based on a sandwich immunoassay.A fluorescence strip reader measured the fluorescence intensity(FI)of the test(T)line and control(C)line.The linear detection range of the strip was 10^(2)–10^(8) colony forming units(CFU)·mL^(-1).The visual limit of detection was 10^(3) CFU·mL^(-1),indicating that the system was ten-fold more sensitive than AuNPs-labelled test strips.ST specificity was analyzed in accordance with agarose gel outputs of polymerase chain reaction(PCR)and SD-LAMP.We detected ST in foods with an acceptable recovery of 85%–110%.The method is rapid,simple,almost equipment-free,and suitable for bacterial detection in foods and for clinical diagnosis.展开更多
Lateral displacement due to liquefaction(D_(H))is the most destructive effect of earthquakes in saturated loose or semi-loose sandy soil.Among all earthquake parameters,the standardized cumulative absolute velocity(CA...Lateral displacement due to liquefaction(D_(H))is the most destructive effect of earthquakes in saturated loose or semi-loose sandy soil.Among all earthquake parameters,the standardized cumulative absolute velocity(CAV_(5))exhibits the largest correlation with increasing pore water pressure and liquefaction.Furthermore,the complex effect of fine content(FC)at different values has been studied and demonstrated.Nevertheless,these two contexts have not been entered into empirical and semi-empirical models to predict D_(H)This study bridges this gap by adding CAV_(5)to the data set and developing two artificial neural network(ANN)models.The first model is based on the entire range of the parameters,whereas the second model is based on the samples with FC values that are less than the 28%critical value.The results demonstrate the higher accuracy of the second model that is developed even with less data.Additionally,according to the uncertainties in the geotechnical and earthquake parameters,sensitivity analysis was performed via Monte Carlo simulation(MCS)using the second developed ANN model that exhibited higher accuracy.The results demonstrated the significant influence of the uncertainties of earthquake parameters on predicting D_(H).展开更多
Liquefaction-induced lateral displacement is responsible for considerable damage to engineered structures during major earthquakes.Therefore,an accurate estimation of lateral displacement in liquefaction-prone regions...Liquefaction-induced lateral displacement is responsible for considerable damage to engineered structures during major earthquakes.Therefore,an accurate estimation of lateral displacement in liquefaction-prone regions is an essential task for geotechnical experts for sustainable development.This paper presents a novel probabilistic framework for evaluating liquefaction-induced lateral displacement using the Bayesian belief network(BBN)approach based on an interpretive structural modeling technique.The BBN models are trained and tested using a wide-range casehistory records database.The two BBN models are proposed to predict lateral displacements for free-face and sloping ground conditions.The predictive performance results of the proposed BBN models are compared with those of frequently used multiple linear regression and genetic programming models.The results reveal that the BBN models are able to learn complex relationships between lateral displacement and its influencing factors as cause-effect relationships,with reasonable precision.This study also presents a sensitivity analysis to evaluate the impacts of input factors on the lateral displacement.展开更多
Due to excessive displacements of tall buildings occasioned by lateral loads, lateral load resisting systems are usually provided to curtail the load effect. The resistance may be offered by Frame Action, Shear Walls,...Due to excessive displacements of tall buildings occasioned by lateral loads, lateral load resisting systems are usually provided to curtail the load effect. The resistance may be offered by Frame Action, Shear Walls, or combined Walls and Frames (also known as Dual System). In this study, finite element based software, ETABS, was used to generate and analyse three-dimensional building models for the assessment of the relative effectiveness of the various lateral load resisting systems. Three models were used, one each for the three resisting systems. Each model consisted of three samples representing three different building heights of 45 m, 75 m, and 99 m. Wind Design Spreadsheet complying with the appropriate British Standards was used to compute preliminary wind load coefficients using the wind speed values from the relevant wind isopleth map of Nigeria as primary data. Lateral wind load was then applied at floor levels of each of the building samples. Each building sample was subjected to three-dimensional analysis for the determination of both the lateral displacements of storey tops and interstorey drifts. The results of the work showed that the dual system was the most efficient lateral-load resisting system based on deflection criterion, as they yielded the least values for lateral displacements and inter-storey drifts. The moment frame was the least stiff of the resisting systems, yielding the highest values of both the lateral displacement and the inter-storey drift.展开更多
When Rankine or Coulomb theories to design of retaining wall are used, it is accepted beforehand that the retaining wall will experience a lateral displacement. This displacement is normally not calculated when a reta...When Rankine or Coulomb theories to design of retaining wall are used, it is accepted beforehand that the retaining wall will experience a lateral displacement. This displacement is normally not calculated when a retaining wall is designed. This paper describes a method to estimate the lateral displacement of retaining walls. A practical example in the lateral displacement of a gravity retaining wall is presented.展开更多
基金supported by the National Natural Science Foundation of China (Grant 81301291)the Beijing Higher Education Young Elite Teacher Project (Grant YETP1208)UNSW Special Research Grants Program
文摘The deterministic lateral displacement (DLD) is an important method used to sort particles and cells of different sizes. In this paper, the flexible cell sorting with the DLD method is studied by using a numerical model based on the immersed boundary-lattice Boltzmann method (IB-LBM). In this model, the fluid motion is solved by the LBM, and the cell membrane-fluid interaction is modeled with the LBM. The proposed model is validated by simulating the rigid particle sorted with the DLD method, and the results are found in good agreement with those measured in experiments. We first study the effect of flexibility on a single cell and multiple cells continuously going through a DLD device. It is found that the cell flexibility can significantly affect the cell path, which means the flexibility could have significant effects on the continuous cell sorting by the DLD method. The sorting characteristics of white blood cells and red blood cells are further studied by varying the spatial distribution of cylinder arrays and the initial cell-cell distance. The numerical results indicate that a well concentrated cell sorting can be obtained under a proper arrangement of cylinder arrays and a large enough initial cell-cell distance.
文摘The method proposed in this paper is based on the fact that the damage in different types of structural members has distinctive influence on the structural stiffness. The intrinsic mechanical property of the structure is tapped and fully utilized for damage detection. The simplified model of the flexibility of frames treats the individual storeys as springs in series and the frame as an equivalent column. It fully considers the main deformation of all beams and columns in the frame. The deformation property of the simplified model accorded well with that of the actual frame model. The obtained increment of lateral displacement change (IOLDC) at the storey level was found to be very sensitive to the local damage in the frame. A damage detection method is pro- posed using the IOLDCs as the damage identification parameters. Numerical examples demonstrate the potential applicability of this method.
基金the scholarship from NUS Graduate School for integrative science and engineering and funding support from Ministry of Education Academic Research Fund,Singapore(AcRF:R-397-000-270-114,R-397-000-183-112).
文摘The separation and detection of particles in suspension are essential for a wide spectrum of applications including medical diagnostics.In this field,microfluidic deterministic lateral displacement(DLD)holds a promise due to the ability of continuous separation of particles by size,shape,deformability,and electrical properties with high resolution.DLD is a passive microfluidic separation technique that has been widely implemented for various bioparticle separations from blood cells to exosomes.DLD techniques have been previously reviewed in 2014.Since then,the field has matured as several physics of DLD have been updated,new phenomena have been discovered,and various designs have been presented to achieve a higher separation performance and throughput.Furthermore,some recent progress has shown new clinical applications and ability to use the DLD arrays as a platform for biomolecules detection.This review provides a thorough discussion on the recent progress in DLD with the topics based on the fundamental studies on DLD models and applications for particle separation and detection.Furthermore,current challenges and potential solutions of DLD are also discussed.We believe that a comprehensive understanding on DLD techniques could significantly contribute toward the advancements in the field for various applications.In particular,the rapid,low-cost,and high-throughput particle separation and detection with DLD have a tremendous impact for point-of-care diagnostics.
文摘Pull-apart basins of three scales were found along the Haiyuan fault zone. The largest one is more than 50km long, named Laolongwan basin developed in Miocene. A model was built to calculate the amount of pull-apart of an extensional basin. Parameters used in calculation include thickness and length of deposition and depth of detachment. The results of calculation show that the amount of pull-apart of the Laolongwan Basin is about 30 km. Based on previous studies and calculating by using the average slip rate method, amount of pull-apart of the other two smaller basins are 22 km and 8 km, respectively. Thus, the total displacement of strike-slip along the Haiyuan fault zone is about 60 km, which is close to the offset of the Yellow River from Jingtai to Jingyuan.
基金Project(50490274) supported by the National Natural Science Foundation of ChinaProject(06JJ4062) supported by the Hunan Provincial Natural Science Foundation, China
文摘In order to investigate the influence of complex conditions of in-situ surrounding rocks on the settlement behavior of nubbly coal mine waste subjected to high gravity pressure,four kinds of loading chambers made of different similar materials with different elastic moduli in experiments were used to simulate the deformation features of in-site rocks,including soft,moderate hardness,hard and extra-hard rocks. The results show that all the settlement-axial load (or axial strain-stress) curves obtained under four different surrounding rock conditions present power-exponential function feature. The final settlement of coal mine waste under the same axial load is closely related to the lumpiness gradations and the deformation behavior of chamber materials used to simulate behaviors of different in-situ surrounding rocks. In the same surrounding rock condition,the final settlement under the same maximum axial load decreases with the decrease of the proportion of larger gradation of coal mine waste. While for the same lumpiness gradation case,the settlement increases with the decrease of elastic modulus of simulated surrounding rocks and the lateral pressure induced by axial load increases with the increase of elastic modulus of loading chambers that are used to simulate different surrounding rocks. The test results also reveal that both the compaction curve and lateral pressure curve show a three-stage behavior,and the duration of each stage,which is closely related to gradations and the deformation feature of loading chamber materials,decreases with the increase of the proportion of the small size of coal mine waste and elastic modulus of the simulated rock materials.
基金Project (50378036) supported by the National Natural Science Foundation of China
文摘The mechanism of long-short composite piled raft foundation was discussed. Assuming the relationship between shear stress and shear strain of the surrounding soil was elasto-plastic, shear displacement method was employed to establish the different explicit relational equations between the load and the displacement at the top of pile in either elastic or elasto-plastic period. Then Mylonakis & Gazetas model was introduced to simulate the interaction between two piles or between piles and soil. Considering the effect of cushion, the flexible coefficients of interaction were provided, With the addition of a relevant program, the settlement calculation for long-short composite piled raft foundation was developed which could be used to account for the interaction of piles, soil and cushion. Finally, the calculation method was used to analyze an engineering example. The calculated value of settlement is 10.2 ram, which is close to the observed value 8.8 mm.
基金supported by the Humanities and Social Sciences Research Project of Ministry of Education of China(No.23YJCZH037)the Educational Science Planning Project of Zhejiang Province(No.2023SCG222)+3 种基金the Foundation of the State Key Laboratory of Mountain Bridge and Tunnel Engineering(No.SKLBT-2210)the Scientific Research Project of Zhejiang Provincial Department of Education(No.Y202248682)the National Key R&D Program of China(No.2022YFC3802301)the National Natural Science Foundation of China(Nos.52178306 and 52008373).
文摘Urban subway tunnel construction inevitably disturbs the surrounding rock and causes the deformation of existing subway structures. Dynamic predictions of the tunnel horizontal displacement, tunnel ballast settlement, and tunnel differential settlement are important for ensuring the safety of buildings and tunnels. First, based on the Hangzhou Metro project, we analyzed the influence of construction on the deformation of existing subway structures and the difficulties and key points in monitoring. Then, a deformation prediction model, based on a back propagation(BP) neural network, was established with massive monitoring data. In particular, we analyzed the influence of four structures of the BP neural network on prediction performance, i.e., single input–single hidden layer–single output, multiple inputs–single hidden layer–single output, single input–double hidden layers–single output, and multiple inputs–double hidden layers–single output, and verified them using measured data.
基金Project(2010G003-F)supported by Technological Research and Development Programs of the Ministry of Railways,China
文摘Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankments was proposed. In order to validate the proposed method, a full-scale high-speed railway embankment(HSRE) with four instrumented subsections over medium compressibility silty clay was constructed in three stages. The soil profile, construction procedure and monitoring of settlements and lateral displacements of the four test sections were described. The field deformation analysis results show that 1) the combined reinforcement of CFG piles and geosynthetic layer perform well in terms of reducing lateral displacements; 2) the development of lateral displacements lags behind the increase of fill load, which can be attributed to the vertical load transfer mechanism of the pile foundation; and 3) pile length has a dominant effect on the stress distribution proportion between piles and surrounding soils. The comparison between predicted and experimental results suggests that the proposed analytical solution and the back analysis-based method are capable of reasonably estimating the lateral deformation and the stress concentration ratio, respectively, if the appropriate soil elastic modulus is chosen.
基金This study was supported by the National Natural Science Foundation of China(Grants 11602053 and 51576033)the Fundamental Research Funds for the Central Universities(Grant DUT18JC23).
文摘This study experimentally and numerically investigated the effect of pulsatile flow of different frequencies and outflow resistance on wall deformation in a lateral aneurysm.A method for constructing a flexible aneurysm model was developed,and a self-designed piston pump was used to provide the pulsatile flow conditions.A fluid-structure interaction simulation was applied for comparison with and analysis of experimental findings.The maximum wall displacement oscillation increased as the pulsation frequency and outflow resistance increased,especially at the aneurysm dome.There is an obvious circular motion of the vortex center accompanying the periodic inflow fluctuation,and the pressure at the aneurysm dome at peak flow increased as the pulsatile flow frequency and terminal flow resistance increased.These results could explain why abnormal blood flow with high frequency and high outflow resistance is one of the risk factors for aneurysm rupture.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China (51474190), Natural Science Foundation of HeBei Province (E2015203311), and Taiyuan City Science and Technology Major Projects (170203).
文摘The theory of metal plastic deformation is an important part of the strip shape control theories. In order to control the shape and gauge accurately during cold thin strip rolling, the mechanism of the metal lateral flow must be revealed clearly. Therefore, the lateral displacement of thin strip was studied by the grid method. Those grids with a line thickness of 10 μm and clear boundaries were successfully manufactured on the strip surface using lithography. Then, the effects of reduction, front and back tension, and taper angle of the first intermediate roll on the metal lateral flow were studied. The strip shape was calculated with and without considering the lateral displacement; furthermore, the calculations were compared with the measured results. The results show that the calculations with considering the lateral displacement are closer to the measured results. In addition, the comparison of finite element analysis results with the experimental results indicates that the test method was reliable.
基金This work was supported by the National Key Research and Development Program of China(2019YFC1606300)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01S174)the Guangdong Academy of Sciences Special Project of Implementing Innovation-Driven Development Capacity Building(2018GDASCX-0401).
文摘Rapid,sensitive,point-of-care detection of pathogenic bacteria is important for food safety.In this study,we developed a novel quantum dot nanobeads-labelled lateral flow immunoassay strip(QBs-labelled LFIAS)combined with strand displacement loop-mediated isothermal amplification(SD-LAMP)for quantitative Salmonella Typhimurium(ST)detection.Quantum dot nanobeads(QBs)served as fluorescence reporters,providing good detection efficiency.The customizable strand displacement(SD)probe was used in LAMP to improve the specificity of the method and prevent by-product capture.Detection was based on a sandwich immunoassay.A fluorescence strip reader measured the fluorescence intensity(FI)of the test(T)line and control(C)line.The linear detection range of the strip was 10^(2)–10^(8) colony forming units(CFU)·mL^(-1).The visual limit of detection was 10^(3) CFU·mL^(-1),indicating that the system was ten-fold more sensitive than AuNPs-labelled test strips.ST specificity was analyzed in accordance with agarose gel outputs of polymerase chain reaction(PCR)and SD-LAMP.We detected ST in foods with an acceptable recovery of 85%–110%.The method is rapid,simple,almost equipment-free,and suitable for bacterial detection in foods and for clinical diagnosis.
基金The authors are grateful for the technical and financial support provided by the Scientific Innovation Group for Youths of Sichuan Province(No.2019JDTD0017).
文摘Lateral displacement due to liquefaction(D_(H))is the most destructive effect of earthquakes in saturated loose or semi-loose sandy soil.Among all earthquake parameters,the standardized cumulative absolute velocity(CAV_(5))exhibits the largest correlation with increasing pore water pressure and liquefaction.Furthermore,the complex effect of fine content(FC)at different values has been studied and demonstrated.Nevertheless,these two contexts have not been entered into empirical and semi-empirical models to predict D_(H)This study bridges this gap by adding CAV_(5)to the data set and developing two artificial neural network(ANN)models.The first model is based on the entire range of the parameters,whereas the second model is based on the samples with FC values that are less than the 28%critical value.The results demonstrate the higher accuracy of the second model that is developed even with less data.Additionally,according to the uncertainties in the geotechnical and earthquake parameters,sensitivity analysis was performed via Monte Carlo simulation(MCS)using the second developed ANN model that exhibited higher accuracy.The results demonstrated the significant influence of the uncertainties of earthquake parameters on predicting D_(H).
基金This study was part of research work sponsored by the National Key Research&Development Plan of China(Nos.2018YFC 1505300-5.3 and 2016YFE0200100)the Key Program of the National Natural Science Foundation of China(Grant No.51639002).
文摘Liquefaction-induced lateral displacement is responsible for considerable damage to engineered structures during major earthquakes.Therefore,an accurate estimation of lateral displacement in liquefaction-prone regions is an essential task for geotechnical experts for sustainable development.This paper presents a novel probabilistic framework for evaluating liquefaction-induced lateral displacement using the Bayesian belief network(BBN)approach based on an interpretive structural modeling technique.The BBN models are trained and tested using a wide-range casehistory records database.The two BBN models are proposed to predict lateral displacements for free-face and sloping ground conditions.The predictive performance results of the proposed BBN models are compared with those of frequently used multiple linear regression and genetic programming models.The results reveal that the BBN models are able to learn complex relationships between lateral displacement and its influencing factors as cause-effect relationships,with reasonable precision.This study also presents a sensitivity analysis to evaluate the impacts of input factors on the lateral displacement.
文摘Due to excessive displacements of tall buildings occasioned by lateral loads, lateral load resisting systems are usually provided to curtail the load effect. The resistance may be offered by Frame Action, Shear Walls, or combined Walls and Frames (also known as Dual System). In this study, finite element based software, ETABS, was used to generate and analyse three-dimensional building models for the assessment of the relative effectiveness of the various lateral load resisting systems. Three models were used, one each for the three resisting systems. Each model consisted of three samples representing three different building heights of 45 m, 75 m, and 99 m. Wind Design Spreadsheet complying with the appropriate British Standards was used to compute preliminary wind load coefficients using the wind speed values from the relevant wind isopleth map of Nigeria as primary data. Lateral wind load was then applied at floor levels of each of the building samples. Each building sample was subjected to three-dimensional analysis for the determination of both the lateral displacements of storey tops and interstorey drifts. The results of the work showed that the dual system was the most efficient lateral-load resisting system based on deflection criterion, as they yielded the least values for lateral displacements and inter-storey drifts. The moment frame was the least stiff of the resisting systems, yielding the highest values of both the lateral displacement and the inter-storey drift.
文摘When Rankine or Coulomb theories to design of retaining wall are used, it is accepted beforehand that the retaining wall will experience a lateral displacement. This displacement is normally not calculated when a retaining wall is designed. This paper describes a method to estimate the lateral displacement of retaining walls. A practical example in the lateral displacement of a gravity retaining wall is presented.