Apparently balanced chromosomal structural rearrangements are known to cause male infertility and account for approximately 1%of azoospermia or severe oligospermia.However,the underlying mechanisms of pathogenesis and...Apparently balanced chromosomal structural rearrangements are known to cause male infertility and account for approximately 1%of azoospermia or severe oligospermia.However,the underlying mechanisms of pathogenesis and etiologies are still largely unknown.Herein,we investigated apparently balanced interchromosomal structural rearrangements in six cases with azoospermia/severe oligospermia to comprehensively identify and delineate cryptic structural rearrangements and the related copy number variants.In addition,high read-depth genome sequencing(GS)(30-fold)was performed to investigate point mutations causative of male infertility.Mate-pair GS(4-fold)revealed additional structural rearrangements and/or copy number changes in 5 of 6 cases and detected a total of 48 rearrangements.Overall,the breakpoints caused truncations of 30 RefSeq genes,five of which were associated with spermatogenesis.Furthermore,the breakpoints disrupted 43 topological-associated domains.Direct disruptions or potential dysregulations of genes,which play potential roles in male germ cell development,apoptosis,and spermatogenesis,were found in all cases(n=6).In addition,high read-depth GS detected dual molecular findings in case MI6,involving a complex rearrangement and two point mutations in the gene DNAH1.Overall,our study provided the molecular characteristics of apparently balanced interchromosomal structural rearrangements in patients with male infertility.We demonstrated the complexity of chromosomal structural rearrangements,potential gene disruptions/dysregulation and single-gene mutations could be the contributing mechanisms underlie male infertility.展开更多
基金supported by the National Natural Science Foundation of China(No.31801042)the Health and Medical Research Fund(No.04152666 and No.07180576)General Research Fund(No.14115418),and Direct Grant(No.2020.052).
文摘Apparently balanced chromosomal structural rearrangements are known to cause male infertility and account for approximately 1%of azoospermia or severe oligospermia.However,the underlying mechanisms of pathogenesis and etiologies are still largely unknown.Herein,we investigated apparently balanced interchromosomal structural rearrangements in six cases with azoospermia/severe oligospermia to comprehensively identify and delineate cryptic structural rearrangements and the related copy number variants.In addition,high read-depth genome sequencing(GS)(30-fold)was performed to investigate point mutations causative of male infertility.Mate-pair GS(4-fold)revealed additional structural rearrangements and/or copy number changes in 5 of 6 cases and detected a total of 48 rearrangements.Overall,the breakpoints caused truncations of 30 RefSeq genes,five of which were associated with spermatogenesis.Furthermore,the breakpoints disrupted 43 topological-associated domains.Direct disruptions or potential dysregulations of genes,which play potential roles in male germ cell development,apoptosis,and spermatogenesis,were found in all cases(n=6).In addition,high read-depth GS detected dual molecular findings in case MI6,involving a complex rearrangement and two point mutations in the gene DNAH1.Overall,our study provided the molecular characteristics of apparently balanced interchromosomal structural rearrangements in patients with male infertility.We demonstrated the complexity of chromosomal structural rearrangements,potential gene disruptions/dysregulation and single-gene mutations could be the contributing mechanisms underlie male infertility.