AIM: To investigate oxaliplatin-induced severe anaphylactic reactions (SAR) in metastatic colorectal cancer in a retrospective case series analysis and to conduct a systemic literature review. METHODS: During a 6-year...AIM: To investigate oxaliplatin-induced severe anaphylactic reactions (SAR) in metastatic colorectal cancer in a retrospective case series analysis and to conduct a systemic literature review. METHODS: During a 6-year period from 2006 to 2011 at Kaohsiung Veterans General Hospital, a total of 412 patients exposed to oxaliplatin-related chemotherapy were retrospectively reviewed. Relevant Englishlanguage studies regarding life-threatening SAR following oxaliplatin were also reviewed in MEDLINE and PubMed search. RESULTS: Eight patients (1.9%, 8 of 412 cases) were identified. Seven patients were successful resuscitated without any sequelae and one patient expired. We changed the chemotherapy regimen in five patients and rechallenged oxaliplatin use in patient 3. Twenty-three relevant English-language studies with 66 patients were reported. Patients received a median of 10 cycles of oxaliplatin (range, 2 to 29). Most common symptoms were respiratory distress (60%), fever (55%), and hypotension (54%). Three fatal events were reported (4.5%). Eleven patients (16%) of the 66 cases were rechallenged by oxaliplatin. CONCLUSION: SAR must be considered in patients receiving oxaliplatin-related chemotherapy, especially in heavily pretreated patients. Further studies on the mechanism, predictors, preventive methods and management of oxaliplatin-related SAR are recommended.展开更多
A hydrometeorological study is made of the September, 1900 severe rainstorm which led up to the record rainfalls over Gangetic West Bengal with subsequent disastrous flooding in the Damodar and the Hooghly rivers. The...A hydrometeorological study is made of the September, 1900 severe rainstorm which led up to the record rainfalls over Gangetic West Bengal with subsequent disastrous flooding in the Damodar and the Hooghly rivers. The spatial extent of the rainstorm for different durations has been examined by constructing the isohyetal patterns based on rainfall records of stations affected by the storm. Areal rainfalls for 1,2 and 3-day periods are calculated and the values have been compared with similar values from other major rainstorms of the region. The comparison revealed that the September, 1900 rainstorm was the heaviest for 1,2 and 3-day durations for all the areas. The storm contributed rainfalls of 33.0 cm, 52.0 cm and 62.0 cm over an area of 10,000 km2 in 1,2 and 3 days respectively. This rainstorm could, therefore, be considered as an important input in flood and design storm studies in the Gangetic West Bengal region. A relationship between point to areal rainfall has also been developed with a view to evaluate areal PMP estimates.展开更多
The current Russian regulatory documents on the safety of nuclear power plant(NPP)specify the requirements regarding design basis accidents(DBAs)and beyond design basis accidents(BDBAs),including severe accidents(SAs)...The current Russian regulatory documents on the safety of nuclear power plant(NPP)specify the requirements regarding design basis accidents(DBAs)and beyond design basis accidents(BDBAs),including severe accidents(SAs)with core meltdown,in NPP design(NP-001-15,NP-082-07,and others).For a rigorous calculational justification of BDBAs and SAs,it is necessary to develop an integral CC that will be in line with the requirements of regulatory documents on verification and certification(RD-03-33-2008,RD-03-34-2000)and will allow for determining the amount of data required to provide information within the scope stipulated by the requirements for the structure of the safety analysis report(SAR)(NP-006-16).The system of codes for realistic analysis of severe accidents(SOCRAT)(formerly,thermohydraulics(RATEG)/coupled physical and chemical processes(SVECHA)/behavior of core materials relocated into the reactor lower plenum(HEFEST))was developed in Russia to analyze a wide range of SAs at NPP with water-cooled water-moderated power-generating reactor(WWER)at all stages of the accident.Enhancements to the code and broadening of its applicability are continually being pursued by the code developers(Nuclear Safety Institute of the Russian Academy of Sciences(IBRAE RAN))with OKB Gidropress JSC and other organizations.Currently,the SOCRAT/В1 code can be used as a base tool to obtain realistic estimates for all parameters important for computational justification of the reactor plant(RP)safety at the in-vessel stage of SAs with fuel melting.To perform analyses using CC SOCRAT/В1,the experience gained during execution of thermohydraulic codes is applied,which allows for minimizing the uncertainties in the results at the early stage of an accident scenario.This study presents the results of the work performed in 2010–2020 in OKB Gidropress JSC using the CC SOCRAT/В1.Approaches have been considered to develop calculational models and analyze SAs using CC SOCRAT.This process,which is clearly structured in OKB Gidropress JSC,provides a noticeable reduction in human involvement,and reduces the probability of erroneous results.This study represents the principal results of the work performed in 2010–2020 in OKB Gidropress JSC using the CC SOCRAT,as well as a list of the tasks planned for 2021–2023.CC SOCRAT/B1 is used as the base thermohydraulic SAs code.展开更多
文摘AIM: To investigate oxaliplatin-induced severe anaphylactic reactions (SAR) in metastatic colorectal cancer in a retrospective case series analysis and to conduct a systemic literature review. METHODS: During a 6-year period from 2006 to 2011 at Kaohsiung Veterans General Hospital, a total of 412 patients exposed to oxaliplatin-related chemotherapy were retrospectively reviewed. Relevant Englishlanguage studies regarding life-threatening SAR following oxaliplatin were also reviewed in MEDLINE and PubMed search. RESULTS: Eight patients (1.9%, 8 of 412 cases) were identified. Seven patients were successful resuscitated without any sequelae and one patient expired. We changed the chemotherapy regimen in five patients and rechallenged oxaliplatin use in patient 3. Twenty-three relevant English-language studies with 66 patients were reported. Patients received a median of 10 cycles of oxaliplatin (range, 2 to 29). Most common symptoms were respiratory distress (60%), fever (55%), and hypotension (54%). Three fatal events were reported (4.5%). Eleven patients (16%) of the 66 cases were rechallenged by oxaliplatin. CONCLUSION: SAR must be considered in patients receiving oxaliplatin-related chemotherapy, especially in heavily pretreated patients. Further studies on the mechanism, predictors, preventive methods and management of oxaliplatin-related SAR are recommended.
文摘A hydrometeorological study is made of the September, 1900 severe rainstorm which led up to the record rainfalls over Gangetic West Bengal with subsequent disastrous flooding in the Damodar and the Hooghly rivers. The spatial extent of the rainstorm for different durations has been examined by constructing the isohyetal patterns based on rainfall records of stations affected by the storm. Areal rainfalls for 1,2 and 3-day periods are calculated and the values have been compared with similar values from other major rainstorms of the region. The comparison revealed that the September, 1900 rainstorm was the heaviest for 1,2 and 3-day durations for all the areas. The storm contributed rainfalls of 33.0 cm, 52.0 cm and 62.0 cm over an area of 10,000 km2 in 1,2 and 3 days respectively. This rainstorm could, therefore, be considered as an important input in flood and design storm studies in the Gangetic West Bengal region. A relationship between point to areal rainfall has also been developed with a view to evaluate areal PMP estimates.
文摘The current Russian regulatory documents on the safety of nuclear power plant(NPP)specify the requirements regarding design basis accidents(DBAs)and beyond design basis accidents(BDBAs),including severe accidents(SAs)with core meltdown,in NPP design(NP-001-15,NP-082-07,and others).For a rigorous calculational justification of BDBAs and SAs,it is necessary to develop an integral CC that will be in line with the requirements of regulatory documents on verification and certification(RD-03-33-2008,RD-03-34-2000)and will allow for determining the amount of data required to provide information within the scope stipulated by the requirements for the structure of the safety analysis report(SAR)(NP-006-16).The system of codes for realistic analysis of severe accidents(SOCRAT)(formerly,thermohydraulics(RATEG)/coupled physical and chemical processes(SVECHA)/behavior of core materials relocated into the reactor lower plenum(HEFEST))was developed in Russia to analyze a wide range of SAs at NPP with water-cooled water-moderated power-generating reactor(WWER)at all stages of the accident.Enhancements to the code and broadening of its applicability are continually being pursued by the code developers(Nuclear Safety Institute of the Russian Academy of Sciences(IBRAE RAN))with OKB Gidropress JSC and other organizations.Currently,the SOCRAT/В1 code can be used as a base tool to obtain realistic estimates for all parameters important for computational justification of the reactor plant(RP)safety at the in-vessel stage of SAs with fuel melting.To perform analyses using CC SOCRAT/В1,the experience gained during execution of thermohydraulic codes is applied,which allows for minimizing the uncertainties in the results at the early stage of an accident scenario.This study presents the results of the work performed in 2010–2020 in OKB Gidropress JSC using the CC SOCRAT/В1.Approaches have been considered to develop calculational models and analyze SAs using CC SOCRAT.This process,which is clearly structured in OKB Gidropress JSC,provides a noticeable reduction in human involvement,and reduces the probability of erroneous results.This study represents the principal results of the work performed in 2010–2020 in OKB Gidropress JSC using the CC SOCRAT,as well as a list of the tasks planned for 2021–2023.CC SOCRAT/B1 is used as the base thermohydraulic SAs code.