Accurate knowledge of mesospheric winds and waves is essential for studying the dynamics and climate in the mesosphere and lower thermosphere(MLT)region.In this study,we conduct a comparative analysis of the mesospher...Accurate knowledge of mesospheric winds and waves is essential for studying the dynamics and climate in the mesosphere and lower thermosphere(MLT)region.In this study,we conduct a comparative analysis of the mesosphere tidal results obtained from two adjacent meteor radars at low latitudes in Kunming,China,from November 2013 to December 2014.These two radars operate at different frequencies of 37.5 MHz and 53.1 MHz,respectively.However,overall good agreement is observed between the two radars in terms of horizontal winds and tide observations.The results show that the dominant tidal waves of the zonal and meridional winds are diurnal and semidiurnal tides.Moreover,we conduct an exhaustive statistical analysis to compare the tidal amplitudes and vertical wavelengths recorded by the dual radar systems,which reveals a high degree of alignment in tidal dynamics.The investigation includes variances and covariances of tidal amplitudes,which demonstrate remarkable consistency across measurements from both radars.This finding highlights clear uniformity in the mesospheric tidal patterns observed at low latitudes by the two neighboring meteor radars.Results of the comparative analysis specifically underscore the significant correlation in vertical wavelength measurements,validating the robustness of radar observations for tidal research.展开更多
The analyses of a data series obtained during TOGA- COARE show the existence of remarkable semi-diurnal intemal tides in the western equatorial Pacific Ocean around 1°45'S, 156°E. Some characteristic parame...The analyses of a data series obtained during TOGA- COARE show the existence of remarkable semi-diurnal intemal tides in the western equatorial Pacific Ocean around 1°45'S, 156°E. Some characteristic parameters of the internal tides are vertical wavenumber -1.6×10^-3 m^-1, horizontal wavenumber (wavelength) 3.3×10^-2 km^-1 (210 km), vertical propagation speed -3.8 cm/s and horizontal propagation speed 2.0 m/s. The waveforms propagate downwards slantingly, that is, the wave energy transfers upwards slantingly. Depth-distribution of the'rotary spectral levels is a saddle-shape. The depths of the trough and the deeper peaks are almost coincident with those of the south boundaries of the South Equatorial Current and the Equatorial Undercurrent, respectively. The mean orientation of the rotary spectral ellipse changes with depth: 30° from north to east at 40 m, and changes into 14° from east to south at 324 m, and generally, it points to northeastward, which indicates "that waves come from the southwest.展开更多
A 3-D unstructured-grid, finite-volume coastal ocean model (FVCOM) was used to study the tides and tidal currents in the Lianzhou Bay and adjacent areas. The simulation results were in good agreement with observatio...A 3-D unstructured-grid, finite-volume coastal ocean model (FVCOM) was used to study the tides and tidal currents in the Lianzhou Bay and adjacent areas. The simulation results were in good agreement with observations. The co-tidal maps of K1 , O1 , and M2 indicated that K1 and O1 were mostly standing waves outside the Lianzhou Bay, while M2 had a largely propagating character. However, all three constituents became propagating waves when entering the Lianzhou Bay, due to the shallow waters. The tidal current ellipses showed the characters of K1 , O1 , and M2 constituents: K1 and O1 were rotating outside the bay, but rectilinear along the water channels inside the bay; M2 was mostly rectilinear over the whole area. The tidal-induced residual current shows the flow was divided into two branches by the Guantouling Peninsula: one turned to flow west; the other was blocked by the southern boundary of the peninsula, creating a clockwise circulation. In Lianzhou Bay, there were two circulation systems, a cyclonic one at the top of the bay and an anti-cyclonic at the mouth.展开更多
20-day in-situ ADCP current and CTD data are used to investigate the characteristics and energy of the internal tides in the northern South China Sea (NSCS). The results show that the O1, K1, M2 and S2 constituents ...20-day in-situ ADCP current and CTD data are used to investigate the characteristics and energy of the internal tides in the northern South China Sea (NSCS). The results show that the O1, K1, M2 and S2 constituents of internal tides are energetic and diurnal constituents (O1 and K1) are dominating. In the observational period, the current vectors of these four constituents all rotate clockwise and the maximum semi-major axe of internal tidal ellipses is more than 14 cm/s. The variation of ocean temperature shows that the internal tides present obvious quasi-diurnal oscillation and the average amplitude reaches 50 m. Furthermore, these internal tides carry high energy and appear to be intermittent. The maximum values of KE (PE) during the observational period are up to 2 (3.5) k J/m^2 for diurnal internal tides, and up to 1 (1.5) k J/m^2 for semidiurnal internal tides.展开更多
Since 2015, a novel green tide has been recurring in the coastal areas of Qinhuangdao at the western coast of the Bohai Sea in China, threatening the environment and ecosystem of the Beidaihe seaside holiday resort al...Since 2015, a novel green tide has been recurring in the coastal areas of Qinhuangdao at the western coast of the Bohai Sea in China, threatening the environment and ecosystem of the Beidaihe seaside holiday resort along the coast. Micro-propagules of the green algae including gametes, spores, micro-germlings and micro-vegetative fragments play an important role in the formation of green tides. They serve as a "seed source" of green macroalgae, and their distributions could reflect and influence the "algae source" of green tides. In this study,monthly surveys in the inshore and offshore areas of the Qinhuangdao coast were conducted from April to September 2016 and in January 2017 to investigate the tempo-spatial distribution patterns and the biomass variations of the green algae micro-propagules. The obtained results show that micro-propagules were mainly distributed in the inshore areas with a significantly decreasing abundance towards offshore areas. Their biomass was highest in July and August, and lowest in winter. The areas that were affected by the green tides showed a remarkably higher abundance of micro-propagules compared to other areas. These micro-propagules could serve as the "seed" source of green tides. Their distribution patterns indicate that the green tide in the coastal areas of Qinhuangdao originated locally.展开更多
The evolution of energy, energy flux and modal structure of the internal tides (ITs) in the northeastern South China Sea is examined using the measurements at two moorings along a cross-slope section from the deep con...The evolution of energy, energy flux and modal structure of the internal tides (ITs) in the northeastern South China Sea is examined using the measurements at two moorings along a cross-slope section from the deep continental slope to the shallow continental shelf. The energy of both diurnal and semidiurnal ITs clearly shows a ~14-day spring-neap cycle, but their phases lag that of barotropic tides, indicating that ITs are not generated on the continental slope. Observations of internal tidal energy flux suggest that they may be generated at the Luzon Strait and propagate west-northwest to the continental slope in the northwestern SCS. Because the continental slope is critical-supercritical with respect to diurnal ITs, about 4.6 kJ/m^2 of the incident energy and 8.7 kW/m of energy flux of diurnal ITs are reduced from the continental slope to the continental shelf. In contrast, the semidiurnal internal tides enter the shelf because of the sub-critical topography with respect to semidiurnal ITs. From the continental slope to the shelf, the vertical structure of diurnal ITs shows significant variation, with dominant Mode 1 on the deep slope and dominant higher modes on the shelf. On the contrary, the vertical structure of the semidiurnal ITs is stable, with dominant Mode 1.展开更多
The four leading tidal constituents M2, S2, K1 and O1 in the South China Sea are simulated by using POM. The model is forced with tide-generating potential and four leading tidal constituents at the open boundary. In ...The four leading tidal constituents M2, S2, K1 and O1 in the South China Sea are simulated by using POM. The model is forced with tide-generating potential and four leading tidal constituents at the open boundary. In order to simulate more exactly, TOPEX/Poseidon altimeter data are assimilated into the model and the open boundary is optimized. The computed co-tidal charts for M2 and K1 constituents are generally consistent with previous results in this region. The numerical simulation shows that energetic internal tides are generated over the bottom topography such as the Dongsha Islands, the Xisha Islands, the Zhongsha Islands, the Nansha Islands and the Luzon Strait.展开更多
A parameterized internal tide dissipation term and self-attraction and loading(SAL) tide term are introduced in a barotropic numerical model to investigate the dynamics of semidiurnal tidal constituents M_2 and S_2 in...A parameterized internal tide dissipation term and self-attraction and loading(SAL) tide term are introduced in a barotropic numerical model to investigate the dynamics of semidiurnal tidal constituents M_2 and S_2 in the Bohai Sea, Yellow Sea and East China Sea(BYECS). The optimal parameters for bottom friction and internal dissipation are obtained through a series of numerical computations. Numerical simulation shows that the tide-generating force contributes 1.2% of M_2 power for the entire BYECS and up to 2.8% for the East China Sea deep basin. SAL tide contributes 4.4% of M_2 power for the BYECS and up to 9.3% for the East China Sea deep basin. Bottom friction plays a major role in dissipating tidal energy in the shelf regions, and the internal tide eff ect is important in the deep water regions. Numerical experiments show that artifi cial removal of tide-generating force in the BYECS can cause a signifi cant dif ference(as much as 30 cm) in model output. Artifi cial removal of SAL tide in the BYECS can cause even greater diff erence, up to 40 cm. This indicates that SAL tide should be taken into account in numerical simulations, especially if the tide-generating force is considered.展开更多
Green tides caused by the unusual accumulation of high floating Ulva prolifera have occurred regularly in the Yellow Sea since 2007.The primary source of the Yellow Sea green tides is the attached algae on the Pyropia...Green tides caused by the unusual accumulation of high floating Ulva prolifera have occurred regularly in the Yellow Sea since 2007.The primary source of the Yellow Sea green tides is the attached algae on the Pyropia aquaculture rafts in the Subei Shoal.Ulva prolifera and Blidingia(Italic)sp.are the main species observed on Pyropia aquaculture rafts in the Subei Shoal.We found that U.prolifera has strong buoyancy and a rapid growth rate,which may explain why it is the dominant species of green tides that occur in the China's sea area of the Yellow Sea.The growth rate of floating U.prolifera was about 20%–31%d–1,which was much higher than Blidingia(Italic)sp.There were about 1.7×104 t of attached algae on the Pyropia aquaculture rafts in May 2012.We found that 39%of attached algae could float when the tide rose in the Subei Shoal,and U.prolifera accounted for 63%of the floating algae.Our analysis estimated that about 4000 t of attached U.prolifera floated into the surrounding waters of the Subei Shoal during the recycling period of aquaculture rafts.These results suggest that the initial floating biomass of large-scale green tides in the Yellow Sea is determined by the U.prolifera biomass attached to Pyropia aquaculture rafts,further impacting the scale of the green tide。展开更多
A layered three-dimensional noalinear numerical model was constructed to simulate the generation and propagation of interanal tides over the continental slope. The simulation was split into external mode computation (...A layered three-dimensional noalinear numerical model was constructed to simulate the generation and propagation of interanal tides over the continental slope. The simulation was split into external mode computation (EMC) and internal mode computation (IMC) to minimize the computational load.IMC was carried out once afte EMC was implemented N time. As to EMC, a semi-implicit numerical scheme was applied in such a way that the pressure gradient terms and the velocity divergence terms were discretized semi-implicitly, but the other terms were discretized explicitly. Eulerian-Lagrangian explicit discretization are applied to the convective terms simultaneously. As a result, the stability of EMC did not depend on the wave celerity and time step was not limited by the CFL condition. More than that, use of the conjugate gradient accelerated Jacobi method further improved the computational efficiency of the model.展开更多
The spatial-temporal characteristics of internal tides (ITs) in the southwest Luzon Strait are examined, based on 9-month mooring current records from autumn 2008 to summer 2009. The results of spectral analysis sho...The spatial-temporal characteristics of internal tides (ITs) in the southwest Luzon Strait are examined, based on 9-month mooring current records from autumn 2008 to summer 2009. The results of spectral analysis show that the ITs in diurnal and semidiurnal frequencies are prominent at the mooring site, especially for the clockwise rotary component. The diurnal ITs are mostly dominated by the first mode except for that in spring when the second mode is relatively predominant. The semidiurnal ITs display a variable multimodal structure. Moreover, an apparent difference is detected in the kinetic energy of diurnal ITs. The energy is strongest in winter, and followed by that in summer, whereas the value is smallest in spring and autumn. It is suggested that the incoherent motions are responsible for the significant seasonal variations of diurnal ITs, reflecting interaction between diurnal ITs and the varying background conditions. However, the semidiumal ITs are independent of seasonal change, whose energy is smaller and only one-third of the diurnal energy in winter. Nevertheless, the abnormal variations of semidiurnal ITs are also related to the variable background conditions. The incoherent semidiurnal constituent accounts for about 37% of the total semidiurnal tidal kinetic energy, but the diurnal tidal motions contain fewer incoherent component (22.2%).展开更多
This paper have collected the measured tides and certain tidal current data in different stages of many projects during past three to five years near the Aojiang River. The harmonic method is used to analyze tide and ...This paper have collected the measured tides and certain tidal current data in different stages of many projects during past three to five years near the Aojiang River. The harmonic method is used to analyze tide and tidal current data observed at five stations in the sea adjacent to Aojiang River. The results show that the tide is mainly regular and semidiumal in the sea near Aojiang of Wenzhou. The tidal amplitudes of M2 constituent are between 170 cm - 193 cm and the lags are between 260~ - 280~, According to the comparison of analytical results of harmonic constants of these stations in 2007, 2010 and 2011, the maximum change of tidal amplitudes and phase-lag range for the main semidiurnal tides (M2, $2, N2), the diurnal tide (K1, O1) and the shallow water tide (M4, MS4, M6) are 1.8 cm - 4.4 cm and 3~ - 7~, respectively. After analyzing the tide and tidal current characteristics of Aojiang River, this paper uses an unstructured grid and Finite-Volume Coastal Ocean Model (FVCOM) to test the results of simulation. The simulated results agree well with the measured data. The new shoreline and depth which are produced by the construction projects closed in important major years, and the tide and tidal current field for the new shoreline and depth are constructed, which describe the superimposed influences of construction engineering in Aojiang estuary.展开更多
Global ocean tides data were derived from Geosat altimeter data by means of the Quasi Harmonic Constituent Method (QHCM). Tidal solutions with resolution of 1°/3 in longitude and latitude were obtained for consti...Global ocean tides data were derived from Geosat altimeter data by means of the Quasi Harmonic Constituent Method (QHCM). Tidal solutions with resolution of 1°/3 in longitude and latitude were obtained for constituents M 2, S 2, O 1, K 1, M 4 and MS 4. The mean sea heights above the reference ellipsoid were also obtained consequently. The obtained tidal constants were compared with those from deep sea and island tide gauge data. The rms differences between the harmonic constants derived from Geosat altimetry and deep sea tide gauges for M 2, S 2, O 1 and K 1 ranged from 1.4 cm to 2.6 cm, although the GM altimeter data have significant errors due to instrument malfunction and other reasons. M 2 tide obtained was the most accurate one among all the tides. Comparison also showed that island tidal constants cannot represent well the tidal distribution in the ocean near the island, because of the significant local effect on tides.展开更多
By using a coordinate transformation,an exact solution of internal tides is obtained when the bot- tom slope is linear and the V(?)is(?)la frequency is constant.Consequently the dispersion relations of free waves are ...By using a coordinate transformation,an exact solution of internal tides is obtained when the bot- tom slope is linear and the V(?)is(?)la frequency is constant.Consequently the dispersion relations of free waves are presented.Compared with Baines solution,the solution derived here is more consistent with展开更多
Based on the three-dimensional ECOM model,the tide,tide-induced residual current,wind-driven and density currents in the Beibu (Tonkin) Gulf and Qiongzhou Strait are diagnostically computed in fine grid.The tides and ...Based on the three-dimensional ECOM model,the tide,tide-induced residual current,wind-driven and density currents in the Beibu (Tonkin) Gulf and Qiongzhou Strait are diagnostically computed in fine grid.The tides and tidal currents in the Beibu Gulf and Qiongzhou Strait are well reproduced.The model results show that the semidiurnal tidal wave propagates eastward from the Beibu Gulf through Qiongzhou Strait,while diurnal tidal waves enter the strait from both the eastern and western sides and interact on the southeast coast of the strait.The formation processes of the residual currents in Qiongzhou Strait in summer (August) and winter (January) are mainly discussed.It is shown that the total residual currents (coupling effect of wind,tide and density) in the strait are westward in both summer and winter.The water volume transported from the east to west into the Beibu Gulf is 0.026 Sv in summer and 0.116 Sv in winter.Numerical experiments indicate that the dominant factor affecting the residual currents in the strait is not the wind stress but the tidal rectification.The westward tide-induced residual current,driven by the tidal rectification,is rather strong in the strait with water volume transport of 0.063 Sv.The wind in summer only reduces the westward tide-induced residual current to a certain extent,and the wind in winter approximately doubles the westward tide-induced residual current through the strait.The density current contributes little to the total residual current in both summer and winter.展开更多
There are obvious periodic oscillations in the observations of storm surges in the East China Sea . The storm surges are not only controlled by the wind stresses and isolated long wave caused by typhoons but also affe...There are obvious periodic oscillations in the observations of storm surges in the East China Sea . The storm surges are not only controlled by the wind stresses and isolated long wave caused by typhoons but also affected by the interaction between astronomical tides and storm surges . In the present paper we simulate the interaction between tides and storm surges by using a two dimensional numerical model. In our numerical experiments we use the data of the storm surge induced by Typhoon 8114 . The calculations tally with the measured data well. The results indicate that the periodic osculations occurring in the elevations of the surge are mainly caused by the interaction between the tide and the storm surge . The numerical experiments also indicate that the forecasting precision may be notably improved if the nonlinear interaction between tides and storm surges is taken into account.展开更多
The layered model in Part I was used to simulate the internal tide in a stratified, two layer, and rectangular sea area with step like topography. The internal tide current velocities of the upper and lower layers and...The layered model in Part I was used to simulate the internal tide in a stratified, two layer, and rectangular sea area with step like topography. The internal tide current velocities of the upper and lower layers and the interfacial elevations were computed and the effect of the upper layer water depth and density difference were studied. Numerical experiments verified that the model can correctly simulate internal tides. The model was also applied to the northwestern part of the South China Sea to simulate the internal tides there with real topography. The distributions of internal tide amplitude in interfaces were delineated.展开更多
A three-dimensional isopycnic-coordinate internal tidal model is employed to investigate the generation, propagation, vertical structure and energy conversion ofM2 internal tides in the Luzon Strait (LS) with moorin...A three-dimensional isopycnic-coordinate internal tidal model is employed to investigate the generation, propagation, vertical structure and energy conversion ofM2 internal tides in the Luzon Strait (LS) with mooring observations. Simulated results, especially the tidal current amplitudes, agree well with observations, demonstrating the reasonability and accuracy of the model. Results indicate that M2 internal tides mainly propagate into three directions horizontally, i.e., eastward towards the western Pacific Ocean, westward towards the Dongsha Island and southwestward towards the South China Sea Basin. In the horizontal direction, tidal current amplitudes decrease as distance increases away from the LS; in the vertical direction, they show an obvious decreasing tendency with depth. Between the double ridges of the LS, a clockwise gyre of M2 baroclinic energy flux appears, which is caused by reflections of M2 internal tides at supercritical topographies, and resonance of M2 internal tides happens along 19.5° and 21.5°N due to the heights and separation distance of the double ridges. The total energy conversion in the LS is about 14.20 GW.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 42125402 and 42174183)the National Key Technologies R&D Program of China (Grant No.2022YFF0503703)+2 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000)the foundation of the National Key Laboratory of Electromagnetic Environment and the Fundamental Research Funds for the Central Universitiesthe Chinese Meridian Project
文摘Accurate knowledge of mesospheric winds and waves is essential for studying the dynamics and climate in the mesosphere and lower thermosphere(MLT)region.In this study,we conduct a comparative analysis of the mesosphere tidal results obtained from two adjacent meteor radars at low latitudes in Kunming,China,from November 2013 to December 2014.These two radars operate at different frequencies of 37.5 MHz and 53.1 MHz,respectively.However,overall good agreement is observed between the two radars in terms of horizontal winds and tide observations.The results show that the dominant tidal waves of the zonal and meridional winds are diurnal and semidiurnal tides.Moreover,we conduct an exhaustive statistical analysis to compare the tidal amplitudes and vertical wavelengths recorded by the dual radar systems,which reveals a high degree of alignment in tidal dynamics.The investigation includes variances and covariances of tidal amplitudes,which demonstrate remarkable consistency across measurements from both radars.This finding highlights clear uniformity in the mesospheric tidal patterns observed at low latitudes by the two neighboring meteor radars.Results of the comparative analysis specifically underscore the significant correlation in vertical wavelength measurements,validating the robustness of radar observations for tidal research.
基金This paper is supported by the National Natural Science Foundation of China(Projects under contracts No.49676275,49976002,40506007)Microwave Imaging National Key Laboratory Foundation(No.51442020103JW1002).
文摘The analyses of a data series obtained during TOGA- COARE show the existence of remarkable semi-diurnal intemal tides in the western equatorial Pacific Ocean around 1°45'S, 156°E. Some characteristic parameters of the internal tides are vertical wavenumber -1.6×10^-3 m^-1, horizontal wavenumber (wavelength) 3.3×10^-2 km^-1 (210 km), vertical propagation speed -3.8 cm/s and horizontal propagation speed 2.0 m/s. The waveforms propagate downwards slantingly, that is, the wave energy transfers upwards slantingly. Depth-distribution of the'rotary spectral levels is a saddle-shape. The depths of the trough and the deeper peaks are almost coincident with those of the south boundaries of the South Equatorial Current and the Equatorial Undercurrent, respectively. The mean orientation of the rotary spectral ellipse changes with depth: 30° from north to east at 40 m, and changes into 14° from east to south at 324 m, and generally, it points to northeastward, which indicates "that waves come from the southwest.
基金supported by the special fund for the Ocean Public Welfare Scientific Research Project, State Oceanic Administration, People's Republic of China(Grant No. 200805065)
文摘A 3-D unstructured-grid, finite-volume coastal ocean model (FVCOM) was used to study the tides and tidal currents in the Lianzhou Bay and adjacent areas. The simulation results were in good agreement with observations. The co-tidal maps of K1 , O1 , and M2 indicated that K1 and O1 were mostly standing waves outside the Lianzhou Bay, while M2 had a largely propagating character. However, all three constituents became propagating waves when entering the Lianzhou Bay, due to the shallow waters. The tidal current ellipses showed the characters of K1 , O1 , and M2 constituents: K1 and O1 were rotating outside the bay, but rectilinear along the water channels inside the bay; M2 was mostly rectilinear over the whole area. The tidal-induced residual current shows the flow was divided into two branches by the Guantouling Peninsula: one turned to flow west; the other was blocked by the southern boundary of the peninsula, creating a clockwise circulation. In Lianzhou Bay, there were two circulation systems, a cyclonic one at the top of the bay and an anti-cyclonic at the mouth.
基金supported by the National Natural Science Foundation of China (No.41176025, 40876008)the SCSMEX project
文摘20-day in-situ ADCP current and CTD data are used to investigate the characteristics and energy of the internal tides in the northern South China Sea (NSCS). The results show that the O1, K1, M2 and S2 constituents of internal tides are energetic and diurnal constituents (O1 and K1) are dominating. In the observational period, the current vectors of these four constituents all rotate clockwise and the maximum semi-major axe of internal tidal ellipses is more than 14 cm/s. The variation of ocean temperature shows that the internal tides present obvious quasi-diurnal oscillation and the average amplitude reaches 50 m. Furthermore, these internal tides carry high energy and appear to be intermittent. The maximum values of KE (PE) during the observational period are up to 2 (3.5) k J/m^2 for diurnal internal tides, and up to 1 (1.5) k J/m^2 for semidiurnal internal tides.
基金The National Key Research and Development Program of China under contract Nos 2016YFC1402104 and2016YFC1402106the National Natural Science Foundation of China under contract No.41606190+2 种基金the Shandong Natural Science Foundation under contract No.ZR2016DB22the Foundation of Key Laboratory of Integrated Monitoring and Applied Technologies for Marine Harmful Algal Blooms,SOA under contract No.MATHAB201806the Creative Team Project of the Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology under contract No.LMEESCTSP-2018-3
文摘Since 2015, a novel green tide has been recurring in the coastal areas of Qinhuangdao at the western coast of the Bohai Sea in China, threatening the environment and ecosystem of the Beidaihe seaside holiday resort along the coast. Micro-propagules of the green algae including gametes, spores, micro-germlings and micro-vegetative fragments play an important role in the formation of green tides. They serve as a "seed source" of green macroalgae, and their distributions could reflect and influence the "algae source" of green tides. In this study,monthly surveys in the inshore and offshore areas of the Qinhuangdao coast were conducted from April to September 2016 and in January 2017 to investigate the tempo-spatial distribution patterns and the biomass variations of the green algae micro-propagules. The obtained results show that micro-propagules were mainly distributed in the inshore areas with a significantly decreasing abundance towards offshore areas. Their biomass was highest in July and August, and lowest in winter. The areas that were affected by the green tides showed a remarkably higher abundance of micro-propagules compared to other areas. These micro-propagules could serve as the "seed" source of green tides. Their distribution patterns indicate that the green tide in the coastal areas of Qinhuangdao originated locally.
基金The State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences under contract No.LTO1915the National Natural Science Foundation of China under contract Nos 41630970,41876016,41676022 and 41521005the Instrument Developing Project of the CAS under contract No.YZ201432
文摘The evolution of energy, energy flux and modal structure of the internal tides (ITs) in the northeastern South China Sea is examined using the measurements at two moorings along a cross-slope section from the deep continental slope to the shallow continental shelf. The energy of both diurnal and semidiurnal ITs clearly shows a ~14-day spring-neap cycle, but their phases lag that of barotropic tides, indicating that ITs are not generated on the continental slope. Observations of internal tidal energy flux suggest that they may be generated at the Luzon Strait and propagate west-northwest to the continental slope in the northwestern SCS. Because the continental slope is critical-supercritical with respect to diurnal ITs, about 4.6 kJ/m^2 of the incident energy and 8.7 kW/m of energy flux of diurnal ITs are reduced from the continental slope to the continental shelf. In contrast, the semidiurnal internal tides enter the shelf because of the sub-critical topography with respect to semidiurnal ITs. From the continental slope to the shelf, the vertical structure of diurnal ITs shows significant variation, with dominant Mode 1 on the deep slope and dominant higher modes on the shelf. On the contrary, the vertical structure of the semidiurnal ITs is stable, with dominant Mode 1.
文摘The four leading tidal constituents M2, S2, K1 and O1 in the South China Sea are simulated by using POM. The model is forced with tide-generating potential and four leading tidal constituents at the open boundary. In order to simulate more exactly, TOPEX/Poseidon altimeter data are assimilated into the model and the open boundary is optimized. The computed co-tidal charts for M2 and K1 constituents are generally consistent with previous results in this region. The numerical simulation shows that energetic internal tides are generated over the bottom topography such as the Dongsha Islands, the Xisha Islands, the Zhongsha Islands, the Nansha Islands and the Luzon Strait.
基金Supported by the National Natural Science Foundation of China(Nos.40676009,40606006)the Qingdao Science and Technology Basic Research Program(No.11-1-4-98-jch)
文摘A parameterized internal tide dissipation term and self-attraction and loading(SAL) tide term are introduced in a barotropic numerical model to investigate the dynamics of semidiurnal tidal constituents M_2 and S_2 in the Bohai Sea, Yellow Sea and East China Sea(BYECS). The optimal parameters for bottom friction and internal dissipation are obtained through a series of numerical computations. Numerical simulation shows that the tide-generating force contributes 1.2% of M_2 power for the entire BYECS and up to 2.8% for the East China Sea deep basin. SAL tide contributes 4.4% of M_2 power for the BYECS and up to 9.3% for the East China Sea deep basin. Bottom friction plays a major role in dissipating tidal energy in the shelf regions, and the internal tide eff ect is important in the deep water regions. Numerical experiments show that artifi cial removal of tide-generating force in the BYECS can cause a signifi cant dif ference(as much as 30 cm) in model output. Artifi cial removal of SAL tide in the BYECS can cause even greater diff erence, up to 40 cm. This indicates that SAL tide should be taken into account in numerical simulations, especially if the tide-generating force is considered.
基金The National Key R&D Program of China under contract Nos 2016YFC1402104 and 2016YFC1402106the National Natural Science Foundation of China under contract No.41606190+2 种基金the Shandong Natural Science Foundation under contract No.ZR2016DB22the Foundation of Key Laboratory of Integrated Monitoring and Applied Technologies for Marine Harmful Algal Blooms,SOA under contract No.MATHAB 201806the Creative Team Project of the Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology under contract No.LMEES-CTSP-2018-3
文摘Green tides caused by the unusual accumulation of high floating Ulva prolifera have occurred regularly in the Yellow Sea since 2007.The primary source of the Yellow Sea green tides is the attached algae on the Pyropia aquaculture rafts in the Subei Shoal.Ulva prolifera and Blidingia(Italic)sp.are the main species observed on Pyropia aquaculture rafts in the Subei Shoal.We found that U.prolifera has strong buoyancy and a rapid growth rate,which may explain why it is the dominant species of green tides that occur in the China's sea area of the Yellow Sea.The growth rate of floating U.prolifera was about 20%–31%d–1,which was much higher than Blidingia(Italic)sp.There were about 1.7×104 t of attached algae on the Pyropia aquaculture rafts in May 2012.We found that 39%of attached algae could float when the tide rose in the Subei Shoal,and U.prolifera accounted for 63%of the floating algae.Our analysis estimated that about 4000 t of attached U.prolifera floated into the surrounding waters of the Subei Shoal during the recycling period of aquaculture rafts.These results suggest that the initial floating biomass of large-scale green tides in the Yellow Sea is determined by the U.prolifera biomass attached to Pyropia aquaculture rafts,further impacting the scale of the green tide。
文摘A layered three-dimensional noalinear numerical model was constructed to simulate the generation and propagation of interanal tides over the continental slope. The simulation was split into external mode computation (EMC) and internal mode computation (IMC) to minimize the computational load.IMC was carried out once afte EMC was implemented N time. As to EMC, a semi-implicit numerical scheme was applied in such a way that the pressure gradient terms and the velocity divergence terms were discretized semi-implicitly, but the other terms were discretized explicitly. Eulerian-Lagrangian explicit discretization are applied to the convective terms simultaneously. As a result, the stability of EMC did not depend on the wave celerity and time step was not limited by the CFL condition. More than that, use of the conjugate gradient accelerated Jacobi method further improved the computational efficiency of the model.
基金The National Natural Science Foundation of China under contract Nos 41276022,U1133001,41230962,41206010 and 41206008the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences under contract No.KLOCW1506Guangdong Province Key Laboratory for Coastal Ocean Variation and Disaster Prediction Technologies,Guangdong Ocean University under contract No.GLOD1401
文摘The spatial-temporal characteristics of internal tides (ITs) in the southwest Luzon Strait are examined, based on 9-month mooring current records from autumn 2008 to summer 2009. The results of spectral analysis show that the ITs in diurnal and semidiurnal frequencies are prominent at the mooring site, especially for the clockwise rotary component. The diurnal ITs are mostly dominated by the first mode except for that in spring when the second mode is relatively predominant. The semidiurnal ITs display a variable multimodal structure. Moreover, an apparent difference is detected in the kinetic energy of diurnal ITs. The energy is strongest in winter, and followed by that in summer, whereas the value is smallest in spring and autumn. It is suggested that the incoherent motions are responsible for the significant seasonal variations of diurnal ITs, reflecting interaction between diurnal ITs and the varying background conditions. However, the semidiumal ITs are independent of seasonal change, whose energy is smaller and only one-third of the diurnal energy in winter. Nevertheless, the abnormal variations of semidiurnal ITs are also related to the variable background conditions. The incoherent semidiurnal constituent accounts for about 37% of the total semidiurnal tidal kinetic energy, but the diurnal tidal motions contain fewer incoherent component (22.2%).
文摘This paper have collected the measured tides and certain tidal current data in different stages of many projects during past three to five years near the Aojiang River. The harmonic method is used to analyze tide and tidal current data observed at five stations in the sea adjacent to Aojiang River. The results show that the tide is mainly regular and semidiumal in the sea near Aojiang of Wenzhou. The tidal amplitudes of M2 constituent are between 170 cm - 193 cm and the lags are between 260~ - 280~, According to the comparison of analytical results of harmonic constants of these stations in 2007, 2010 and 2011, the maximum change of tidal amplitudes and phase-lag range for the main semidiurnal tides (M2, $2, N2), the diurnal tide (K1, O1) and the shallow water tide (M4, MS4, M6) are 1.8 cm - 4.4 cm and 3~ - 7~, respectively. After analyzing the tide and tidal current characteristics of Aojiang River, this paper uses an unstructured grid and Finite-Volume Coastal Ocean Model (FVCOM) to test the results of simulation. The simulated results agree well with the measured data. The new shoreline and depth which are produced by the construction projects closed in important major years, and the tide and tidal current field for the new shoreline and depth are constructed, which describe the superimposed influences of construction engineering in Aojiang estuary.
文摘Global ocean tides data were derived from Geosat altimeter data by means of the Quasi Harmonic Constituent Method (QHCM). Tidal solutions with resolution of 1°/3 in longitude and latitude were obtained for constituents M 2, S 2, O 1, K 1, M 4 and MS 4. The mean sea heights above the reference ellipsoid were also obtained consequently. The obtained tidal constants were compared with those from deep sea and island tide gauge data. The rms differences between the harmonic constants derived from Geosat altimetry and deep sea tide gauges for M 2, S 2, O 1 and K 1 ranged from 1.4 cm to 2.6 cm, although the GM altimeter data have significant errors due to instrument malfunction and other reasons. M 2 tide obtained was the most accurate one among all the tides. Comparison also showed that island tidal constants cannot represent well the tidal distribution in the ocean near the island, because of the significant local effect on tides.
基金National Education Committee Foundation Programs 9142305 and 9342305National Natural Science Foundation Program 49376257National Special Research Program 85-927-05-03
文摘By using a coordinate transformation,an exact solution of internal tides is obtained when the bot- tom slope is linear and the V(?)is(?)la frequency is constant.Consequently the dispersion relations of free waves are presented.Compared with Baines solution,the solution derived here is more consistent with
基金Supported by the National Basic Research Program (973 Program) (No.2007CB411807)the Open Research Program of the CAS Key Laboratory of Tropical Marine Environmental Dynamics (No.LED0404)+1 种基金the Key Project of Chinese Ministry of Education (No.108159)the National Key Technologies R&D Program (No.2007BAC03A06),China
文摘Based on the three-dimensional ECOM model,the tide,tide-induced residual current,wind-driven and density currents in the Beibu (Tonkin) Gulf and Qiongzhou Strait are diagnostically computed in fine grid.The tides and tidal currents in the Beibu Gulf and Qiongzhou Strait are well reproduced.The model results show that the semidiurnal tidal wave propagates eastward from the Beibu Gulf through Qiongzhou Strait,while diurnal tidal waves enter the strait from both the eastern and western sides and interact on the southeast coast of the strait.The formation processes of the residual currents in Qiongzhou Strait in summer (August) and winter (January) are mainly discussed.It is shown that the total residual currents (coupling effect of wind,tide and density) in the strait are westward in both summer and winter.The water volume transported from the east to west into the Beibu Gulf is 0.026 Sv in summer and 0.116 Sv in winter.Numerical experiments indicate that the dominant factor affecting the residual currents in the strait is not the wind stress but the tidal rectification.The westward tide-induced residual current,driven by the tidal rectification,is rather strong in the strait with water volume transport of 0.063 Sv.The wind in summer only reduces the westward tide-induced residual current to a certain extent,and the wind in winter approximately doubles the westward tide-induced residual current through the strait.The density current contributes little to the total residual current in both summer and winter.
文摘There are obvious periodic oscillations in the observations of storm surges in the East China Sea . The storm surges are not only controlled by the wind stresses and isolated long wave caused by typhoons but also affected by the interaction between astronomical tides and storm surges . In the present paper we simulate the interaction between tides and storm surges by using a two dimensional numerical model. In our numerical experiments we use the data of the storm surge induced by Typhoon 8114 . The calculations tally with the measured data well. The results indicate that the periodic osculations occurring in the elevations of the surge are mainly caused by the interaction between the tide and the storm surge . The numerical experiments also indicate that the forecasting precision may be notably improved if the nonlinear interaction between tides and storm surges is taken into account.
文摘The layered model in Part I was used to simulate the internal tide in a stratified, two layer, and rectangular sea area with step like topography. The internal tide current velocities of the upper and lower layers and the interfacial elevations were computed and the effect of the upper layer water depth and density difference were studied. Numerical experiments verified that the model can correctly simulate internal tides. The model was also applied to the northwestern part of the South China Sea to simulate the internal tides there with real topography. The distributions of internal tide amplitude in interfaces were delineated.
基金The National High Technology Research and Development Program(863 Program) of China under contract Nos2013AA122803 and 2013AA09A502the National Natural Science Foundation of China under contract Nos 41206001 and 41371496the National Science and Technology Support Program under contract No.2013BAK05B04
文摘A three-dimensional isopycnic-coordinate internal tidal model is employed to investigate the generation, propagation, vertical structure and energy conversion ofM2 internal tides in the Luzon Strait (LS) with mooring observations. Simulated results, especially the tidal current amplitudes, agree well with observations, demonstrating the reasonability and accuracy of the model. Results indicate that M2 internal tides mainly propagate into three directions horizontally, i.e., eastward towards the western Pacific Ocean, westward towards the Dongsha Island and southwestward towards the South China Sea Basin. In the horizontal direction, tidal current amplitudes decrease as distance increases away from the LS; in the vertical direction, they show an obvious decreasing tendency with depth. Between the double ridges of the LS, a clockwise gyre of M2 baroclinic energy flux appears, which is caused by reflections of M2 internal tides at supercritical topographies, and resonance of M2 internal tides happens along 19.5° and 21.5°N due to the heights and separation distance of the double ridges. The total energy conversion in the LS is about 14.20 GW.