Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi...Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.展开更多
Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multi...Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multiple foliar traits from the same individual and including shade leaves are sparse,which limits our ability to investigate trait-trait,trait-environment relationships and trait coordination in both sun and shade leaves.We presented a comprehensive dataset of 15 foliar traits from sun and shade leaves sampled with leaf spectroscopy,including 424 individuals of 110 plant species from 19 sites across eastern North America.We investigated trait variation,covariation,scaling relationships with leaf mass,and the effects of environment,canopy position,and taxonomy on trait expression.Generally,sun leaves had higher leaf mass per area,nonstructural carbohydrates and total phenolics,lower mass-based chlorophyll a+b,carotenoids,phosphorus,and potassium,but exhibited species-specific characteristics.Covariation between sun and shade leaf traits,and trait-environment relationships were overall consistent across species.The main dimensions of foliar trait variation in seed plants were revealed including leaf economics traits,photosynthetic pigments,defense,and structural traits.Taxonomy and canopy position collectively explained most of the foliar trait variation.This study highlights the importance of including intra-individual and intra-specific trait variation to improve our understanding of ecosystem functions.Our findings have implications for efficient field sampling,and trait mapping with remote sensing.展开更多
Maximum power point tracking(MPPT)technology plays a key role in improving the energy conversion efficiency of photovoltaic(PV)systems,especially when multiple local maximum power points(LMPPs)occur under partial shad...Maximum power point tracking(MPPT)technology plays a key role in improving the energy conversion efficiency of photovoltaic(PV)systems,especially when multiple local maximum power points(LMPPs)occur under partial shading conditions(PSC).It is necessary to modify the operating point efficiently and accurately with the help of MPPT technology to maximize the collected power.Even though a lot of research has been carried out and impressive progress achieved for MPPT technology,it still faces some challenges and dilemmas.Firstly,the mathematical model established for PV cells is not precise enough.Second,the existing algorithms are often optimized for specific conditions and lack comprehensive adaptability to the actual operating environment.Besides,a single algorithm may not be able to give full play to its advantages.In the end,the selection criteria for choosing the suitable MPPT algorithm/converter combination to achieve better performance in a given scenario is very limited.Therefore,this paper systematically discusses the current research status and challenges faced by PV MPPT technology around the three aspects of MPPT models,algorithms,and hardware implementation.Through in-depth thinking and discussion,it also puts forward positive perspectives on future development,and five forward-looking solutions to improve the performance of PV systems MPPT are suggested.展开更多
A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there ...A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.展开更多
Desmodium adscendens is a plant in the Fabaceae family that is very important to man, both agronomically and medicinally. It is an important cover crop that contributes to improving soil fertility, reducing the risks ...Desmodium adscendens is a plant in the Fabaceae family that is very important to man, both agronomically and medicinally. It is an important cover crop that contributes to improving soil fertility, reducing the risks associated with crop pests and weeds. However, very little research has been carried out into its domestication for use as a cover crop in banana plantations in Côte d’Ivoire. The general objective of this study was to evaluate, under semi-controlled conditions, the effect of different levels of shade on the growth and development of Desmodium adscendens. The studies were carried out on the experimental site of the UP-Plant Physiology Laboratory. Four shading levels were evaluated: 0 (NO), 20% (N1), 40% (N2) and 60% (N3) light levels. The Desmodium adscendens cuttings used were collected from a 3-month nursery. For each treatment, 10 tubs containing sterilized soil were used, and 50 cuttings were planted. After planting, growth and development parameters were assessed weekly on 10 plants. In addition, yield and fresh and dry mass were measured. Finally, the reproductive cycle of Desmodium adscendens was determined. The results showed that plant growth and development were greatest in plants grown under the 40% shade level, followed by the 20% and 60% shade levels. In contrast, plants in full light showed poor growth and development. The 40% shade level was the most favorable for growing Desmodium adscendens cuttings, with a cycle length of 67 days. Growing Desmodium adscendens under shade with 20% and 40% light levels could be recommended to farmers.展开更多
This paper investigates the adaptability of Maximum Power Point Tracking (MPPT) algorithms in single-stage three-phase photovoltaic (PV) systems connected to the grid of Congo-Brazzaville and compares the attributes o...This paper investigates the adaptability of Maximum Power Point Tracking (MPPT) algorithms in single-stage three-phase photovoltaic (PV) systems connected to the grid of Congo-Brazzaville and compares the attributes of various conventional, significance and novelty of controller system of the proposed of method and improved Incremental Conductance algorithms, Perturbation and Observation Techniques, and other Maximum Power Point Tracking (MPPT) algorithms in normal and partial shading conditions. Performance evaluation techniques are discussed on the basis of the dynamic parameters of the PV system although the control of this structure is relatively advanced technology but the conversion efficiency is difficult to improve due to increase in transformation series. The single stage topology has a simple topology with high reliability and efficiency because of high power consumption, but control algorithm is more complex because of its power convert main circuit a new strategy is being developed. This paper describes a method for maximum power point tracking (MPPT) in the single-stage and three single-phase PV grid-connected system. In the paper, the nonlinear output characteristics of the PV including I-V & P-V are obtained in changed solar insulations or temperature based on MATLAB, and the MPPT algorithm which is based on the P & O algorithm method, compared with Incremental Conductance, is also described, a dimensioning of the impedance adapter for better stabilization. A comparison SPWM and SVPWM control methods in the case of a grid connection applied to the electrical grid of Republic of Congo and their influences on the dynamic performance of the system and their impact in reducing the harmonic rate for better injection into the grid. The simulation model of three single-phase PV grid-connected system is built, and simulation results show the MPPT algorithm has excellent dynamic and static performances, which verifies the Incremental Conductance is effective for MPPT in the single-stage and three single-phase PV grid-connected system.展开更多
Chlorophyll fluorescence emission, pigment composition and photosynthetic rate of shade-grown cotton ( Gossypium hirsutum L.) plants were measured immediately after suddenly exposing to full sunlight and at regular in...Chlorophyll fluorescence emission, pigment composition and photosynthetic rate of shade-grown cotton ( Gossypium hirsutum L.) plants were measured immediately after suddenly exposing to full sunlight and at regular intervals there after within 15 d. Photoinhibition occurred in shade-grown cotton leaves immediately after exposed to full sunlight. The chlorophyll fluorescence parameter F-v/F-m and PhiPS II, which reflect the efficiency of PS II,obviously decreased in shade-grown leaves, much lower than that of the full sunlight-grown leaves. On the contrary, F-o value was sharply increased. Neither of these parameters could completely recover till next morning. The photoinhibition was chronic and continued for about 4 d, while the F-v/F-m and the net photosynthetic rate ( P-n) continued to decline, then began to increase gradually 6 d later and turned stable after 10 - 12 d, appearing as an acclimation phenomenon. However, the final value of F-v/F-m and P-n did not reach the level as in those leaves grown in the full sunlight ever before. The final P-n was higher by 60% than that before exposure, but lower for more than 40% than that of the full sunlight-grown leaves. The most notable response of chloroplast pigment composition was a pronounced increase in the pool size of carotenoids in xanthophyll cycle over a period of 3 d. The results indicated that when shade-grown cotton seedlings were suddenly transferred to the full sunlight, the decline of F-v/F-m and P-n might associate with the damage of the PS II reaction center. During the light acclimation, photoprotective mechanisms such as the xanthophyll cycle-dependent energy dissipation were increased, so that photodamage in leaves transferred from low to high light might be reduced.展开更多
Selection of fire resistant tree species for the southwestern China and the planting of those species can effectively prevent large area's fire damage. In this paper the components and flammability of leaves, twi...Selection of fire resistant tree species for the southwestern China and the planting of those species can effectively prevent large area's fire damage. In this paper the components and flammability of leaves, twigs and barks of 12 tree species in the mountain area of southwestern China have been tested and analyzed in the laboratory. The test and analysis indicate the results as follows:(1) for all the tree species, the fire resistance of leaves is much weaker than that of twigs and barks, and the broad leaves are stronger than those of conifers in fire resistance. (2) Heat value, moisture, ignition point and ash content are main indexes to affect fire resistance. Heat value relates to lignose content and benzene ethanol extractive content linearly.(3) Of all the 12 tree species, Schima superba,Castanopsis hystrix, Myrica rubra have the strongest resistance to fire; Machilus pauhoi, Michelia macclurei, Mytilaria laosensis, Camellia olifera and Manglietia tenuipes are relatively strong in fire resistance, and Lithocapus thalassica, Tsoongiodendron odorum, Cunninghamia lanceolata and Pinus massoniana are weak in fire resistance.展开更多
In the research, four shading treatments were set, including the treatments with shading degrees at 0, 40%, 60% and 70%, in order to explore storage rate and seedling growth of annual Phoebe bournei. The results showe...In the research, four shading treatments were set, including the treatments with shading degrees at 0, 40%, 60% and 70%, in order to explore storage rate and seedling growth of annual Phoebe bournei. The results showed that the storage rate is growing upon shading degree. In the research, for example, storage rate reached the peak with the shading degree at 70%, and only 42.2% with shading degree at 0. In addition, seedling height and ground diameter showed extremely significant differences among treatments, and the treatment with shading degree at 60% was the best.展开更多
Thirty genotypes from rice germplasm were identified under photooxidation and shading condition and divided into four basic types : (1) cultivars tolerant to both photooxidation and shading, (2) cultivars tolerant to...Thirty genotypes from rice germplasm were identified under photooxidation and shading condition and divided into four basic types : (1) cultivars tolerant to both photooxidation and shading, (2) cultivars tolerant to photooxidation but sensitive to shading, (3) cultivars tolerant to shading but sensitive to photooxidation, and (4) cultivars sensitive to photooxidation and shading. A comparative study of photosynthetic characteristics of a cultivar (cv. Wuyujing 3) that is tolerant and a cultivar (cv. Xiangxian) that is sensitive to both photoinhibition and shading showed that the photochemical efficiency of PSⅡ ( F v/F m ) and the content of PSⅡ_D1 protein in the tolerant cultivar “Wuyujing 3” decreased less under photoinhibition conditions as compared with “Xiangxian”. Under photooxidation conditions, superoxide dismutase was induced rapidly to a higher level and the active oxygen O - built up to a lower level in “Wuyujing 3” than in “Xiangxian”. At the same time, the photosynthetic rate decreased by 23% in “Wuyujing 3” vs. 64% in “Xiangxian”. Shading (20% natural light) during the booting stage caused only small decreases (7%-13%) in RuBisCO activity and the photosynthetic rate in “Wuyujing 3” but showed marked decreases (57%-64%) in “Xiangxian” which corresponded to the decreases in grain yield in the two cultivars (38% and 73%, respectively). The correlation analysis showed that the tolerance to photooxidation is mainly related to PSⅡ_D1 and that to shading is mainly related to RuBisCO activity. This study provided a simple and effective screening method and physiological basis for crop breeding in enhancing tolerance to both high and low radiation.展开更多
With annual Bischofia javanica seedlings as experimental material, the plasticity and comprehensive evaluation methods were employed to investigate the effects of different shading degrees (100% NS (natural sunshine...With annual Bischofia javanica seedlings as experimental material, the plasticity and comprehensive evaluation methods were employed to investigate the effects of different shading degrees (100% NS (natural sunshine), 41.3% NS, 14.6% NS and 3.6% NS) on B. javanica seedlings growth, so as to obtain the shade toler- ance in B. javanica. The results showed that with the shading degree increasing, the seedling height increment, diameter increment, leaf area, fresh weights (above- ground part, underground part and whole plant) and dry weights (aboveground part, underground part and whole plant) of B. javanica seedlings all increased first and then decreased, and reached peak values under 41.3% NS, while the total root length, average root diameter, total surface area, total root volume and total root number all presented a decreasing trend. Also the comprehensive evaluation by subordinate function value method and plasticity analysis were carried out on these growth indexes. It was concluded that B. javanica seedlings have medium shade tol- erance from the comDrehensive analysis of growth indexes.展开更多
Maize is an important food crop, as well as the irreplaceable feed and industrial materials, having huge market demand in China. Southwestern region of China is the third largest main maize producing zone, and the fre...Maize is an important food crop, as well as the irreplaceable feed and industrial materials, having huge market demand in China. Southwestern region of China is the third largest main maize producing zone, and the frequent occurrence of abiotic stress conditions such as drought, heat, cold, wet shaded stress have severely affected the development of maize production, causing low and unstable corn yields, severely restricting the maize industry development in the southwest of China. This paper preliminarily describes the maize resistance to abiotic stresses in southwestem region of China, putting forward the countermeasures and the key research direction in the practice of breeding in order to provide reference for the cultivation of new varieties with high yield and stress resistance, and improving the levels of maize stress resistance breeding in southwestern region of China.展开更多
通过对由医疗成像设备获取的二维灰度图像进行形状重建,得到的三维立体原型能帮助医学诊断人员确诊病情。介绍了Shape from Shading的实现原理和扫描电镜成像系统的简单构成,提出了一种基于线性逼近的用于解决SEM反射映射函数的实现方法...通过对由医疗成像设备获取的二维灰度图像进行形状重建,得到的三维立体原型能帮助医学诊断人员确诊病情。介绍了Shape from Shading的实现原理和扫描电镜成像系统的简单构成,提出了一种基于线性逼近的用于解决SEM反射映射函数的实现方法,并将之应用于红血细胞的三维图像重构,得到的细胞图形非常接近其真实形状。展开更多
[Objective]The study was conducted to investigate the effects of shading treatments on growth of Asimina triloba (L) Dunal seedlings and provided the theoretical basis for seedling production. [Method]70 day-old A. ...[Objective]The study was conducted to investigate the effects of shading treatments on growth of Asimina triloba (L) Dunal seedlings and provided the theoretical basis for seedling production. [Method]70 day-old A. triloba seedlings had similar stem diameter and plant height and good growth vigour were taken as tested materials in 2005. 4 light gradient treatments which were the natural light with 100% light intensity, one-layer, two-layer and three-layer black shading network with the light transmittance rate of 50%, 25% and 12.5% were set up to study the effects of different shading treatments on growth of A. triloba. [ Result] With the shading treatments of one-layer and two-layer net, the plants of A. triloba seedlings grew rapidly. As the intensity of illumination decreased, the cetents of chlorophyll a ( Chl. a), chlorophyll b ( Chl. b) and total chlorophyll increased at first and then reduced. At the same time the chlorophyll a/b value became smaller. Under natural light, the plants tended to consume more water and the soil temperature at 15:00 p. m was higher. There was a smaller difference among various treatments. [ Conclusion]The suitable shading treatment to the growth of A. triloba seedlings was under the light transmittance rate of 50% and height and stem diameter of trees increased fast. Chlorophyll a ( Chl. a), chlorophyll b ( Chl. b) content in leaves of A. triloba seedlings were highest comparing with those in other conditions.展开更多
Muehlewbeckia complera was introduced to China in 2002 as indoor-hanging ornamental foliage plant. The experiment of the shade tolerance for this species was carried out in different light intensities (0.14–946.00 μ...Muehlewbeckia complera was introduced to China in 2002 as indoor-hanging ornamental foliage plant. The experiment of the shade tolerance for this species was carried out in different light intensities (0.14–946.00 μmol·m?2·s?1). After 40 days in experimental areas, leaf photosynthentic characteristics indexes ofM. complera in different photosynthesis active radiation (PAR) were measured with LI-COR6400 apparatus, such as the light compensation point, light saturation point, and maximum net photosynthesis rate, at the same time, the increments of total leaf area and leaf amount were measured. The results showed that the optimum light intensity range forM. complera was from 9.26 μmol·m?2·s?1 to 569.00 μmol·m?2·s?1 (463–28150 lx, relative humidity (RH) for 46–60%, temperature at 16–22°C). Under this condition, leaf photosynthetic efficiency was tiptop. AlthoughM. complera belonged to the moderate sun-adaptation plant species, the plant growth was inhibited when PAR increased to the level of 569.000 μmol·m?2·s?1 or above.M. complera could sprout new leaves in photosynthesis active radiation of 0.16–19.22 μmol·m?2·s?1 (8–961 lx), or 10 μmol·m?2·s?1 for above 6 h. Keywords Muehlewbeckia complera - Shade tolerance - Cultivation - Photosynthesis CLC number S602.1 Document code A Foundation item: This study was supported by the Research Foundation of Northeast Forestry University.Biography: YUE Hua (1962-), female, Associate professor in Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Zhu Hong展开更多
Assuming uniform albedo and Lambertian surface for the imaging model, a new robust method for estimation of illuminant direction and albedo from shading is presented. If there is a singular point with maximum intensit...Assuming uniform albedo and Lambertian surface for the imaging model, a new robust method for estimation of illuminant direction and albedo from shading is presented. If there is a singular point with maximum intensity in an image, the method use shading information of the singular point and its neighbors to estimate directly the elevation of illuminant direction, surface albedo, and the bias brightness. Some experiment results on synthetic images are given to illustrate the new approach is accurate and robust.展开更多
基金This work was supported by the National Natural Science Foundation of China(32171765).
文摘Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.
基金supported by National Natural Science Foundation of China (42001305)Guangdong Basic and Applied Basic Research Foundation (2022A1515011459)+3 种基金GDAS'Special Project of Science and Technology Development (2020GDASYL-20200102001)Guangzhou Basic and Applied Basic Research Foundation (2023A04J1534) to Z.W.the US National Science Foundation (NSF) Macrosystems Biology and NEON-Enabled Science grant 1638720 to P.A.T.,and E.L.K.NSF Biology Integration Institute award ASCEND,DBI-2021898 to P.A.T.
文摘Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multiple foliar traits from the same individual and including shade leaves are sparse,which limits our ability to investigate trait-trait,trait-environment relationships and trait coordination in both sun and shade leaves.We presented a comprehensive dataset of 15 foliar traits from sun and shade leaves sampled with leaf spectroscopy,including 424 individuals of 110 plant species from 19 sites across eastern North America.We investigated trait variation,covariation,scaling relationships with leaf mass,and the effects of environment,canopy position,and taxonomy on trait expression.Generally,sun leaves had higher leaf mass per area,nonstructural carbohydrates and total phenolics,lower mass-based chlorophyll a+b,carotenoids,phosphorus,and potassium,but exhibited species-specific characteristics.Covariation between sun and shade leaf traits,and trait-environment relationships were overall consistent across species.The main dimensions of foliar trait variation in seed plants were revealed including leaf economics traits,photosynthetic pigments,defense,and structural traits.Taxonomy and canopy position collectively explained most of the foliar trait variation.This study highlights the importance of including intra-individual and intra-specific trait variation to improve our understanding of ecosystem functions.Our findings have implications for efficient field sampling,and trait mapping with remote sensing.
基金funding from the Open Fund Project of Intelligent Electric Power Grid Key Laboratory of Sichuan Province under Grant(2023-IEPGKLSP-KFYB03)Yunnan Provincial Basic Research Project(202301AT070443).
文摘Maximum power point tracking(MPPT)technology plays a key role in improving the energy conversion efficiency of photovoltaic(PV)systems,especially when multiple local maximum power points(LMPPs)occur under partial shading conditions(PSC).It is necessary to modify the operating point efficiently and accurately with the help of MPPT technology to maximize the collected power.Even though a lot of research has been carried out and impressive progress achieved for MPPT technology,it still faces some challenges and dilemmas.Firstly,the mathematical model established for PV cells is not precise enough.Second,the existing algorithms are often optimized for specific conditions and lack comprehensive adaptability to the actual operating environment.Besides,a single algorithm may not be able to give full play to its advantages.In the end,the selection criteria for choosing the suitable MPPT algorithm/converter combination to achieve better performance in a given scenario is very limited.Therefore,this paper systematically discusses the current research status and challenges faced by PV MPPT technology around the three aspects of MPPT models,algorithms,and hardware implementation.Through in-depth thinking and discussion,it also puts forward positive perspectives on future development,and five forward-looking solutions to improve the performance of PV systems MPPT are suggested.
文摘A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.
文摘Desmodium adscendens is a plant in the Fabaceae family that is very important to man, both agronomically and medicinally. It is an important cover crop that contributes to improving soil fertility, reducing the risks associated with crop pests and weeds. However, very little research has been carried out into its domestication for use as a cover crop in banana plantations in Côte d’Ivoire. The general objective of this study was to evaluate, under semi-controlled conditions, the effect of different levels of shade on the growth and development of Desmodium adscendens. The studies were carried out on the experimental site of the UP-Plant Physiology Laboratory. Four shading levels were evaluated: 0 (NO), 20% (N1), 40% (N2) and 60% (N3) light levels. The Desmodium adscendens cuttings used were collected from a 3-month nursery. For each treatment, 10 tubs containing sterilized soil were used, and 50 cuttings were planted. After planting, growth and development parameters were assessed weekly on 10 plants. In addition, yield and fresh and dry mass were measured. Finally, the reproductive cycle of Desmodium adscendens was determined. The results showed that plant growth and development were greatest in plants grown under the 40% shade level, followed by the 20% and 60% shade levels. In contrast, plants in full light showed poor growth and development. The 40% shade level was the most favorable for growing Desmodium adscendens cuttings, with a cycle length of 67 days. Growing Desmodium adscendens under shade with 20% and 40% light levels could be recommended to farmers.
文摘This paper investigates the adaptability of Maximum Power Point Tracking (MPPT) algorithms in single-stage three-phase photovoltaic (PV) systems connected to the grid of Congo-Brazzaville and compares the attributes of various conventional, significance and novelty of controller system of the proposed of method and improved Incremental Conductance algorithms, Perturbation and Observation Techniques, and other Maximum Power Point Tracking (MPPT) algorithms in normal and partial shading conditions. Performance evaluation techniques are discussed on the basis of the dynamic parameters of the PV system although the control of this structure is relatively advanced technology but the conversion efficiency is difficult to improve due to increase in transformation series. The single stage topology has a simple topology with high reliability and efficiency because of high power consumption, but control algorithm is more complex because of its power convert main circuit a new strategy is being developed. This paper describes a method for maximum power point tracking (MPPT) in the single-stage and three single-phase PV grid-connected system. In the paper, the nonlinear output characteristics of the PV including I-V & P-V are obtained in changed solar insulations or temperature based on MATLAB, and the MPPT algorithm which is based on the P & O algorithm method, compared with Incremental Conductance, is also described, a dimensioning of the impedance adapter for better stabilization. A comparison SPWM and SVPWM control methods in the case of a grid connection applied to the electrical grid of Republic of Congo and their influences on the dynamic performance of the system and their impact in reducing the harmonic rate for better injection into the grid. The simulation model of three single-phase PV grid-connected system is built, and simulation results show the MPPT algorithm has excellent dynamic and static performances, which verifies the Incremental Conductance is effective for MPPT in the single-stage and three single-phase PV grid-connected system.
文摘Chlorophyll fluorescence emission, pigment composition and photosynthetic rate of shade-grown cotton ( Gossypium hirsutum L.) plants were measured immediately after suddenly exposing to full sunlight and at regular intervals there after within 15 d. Photoinhibition occurred in shade-grown cotton leaves immediately after exposed to full sunlight. The chlorophyll fluorescence parameter F-v/F-m and PhiPS II, which reflect the efficiency of PS II,obviously decreased in shade-grown leaves, much lower than that of the full sunlight-grown leaves. On the contrary, F-o value was sharply increased. Neither of these parameters could completely recover till next morning. The photoinhibition was chronic and continued for about 4 d, while the F-v/F-m and the net photosynthetic rate ( P-n) continued to decline, then began to increase gradually 6 d later and turned stable after 10 - 12 d, appearing as an acclimation phenomenon. However, the final value of F-v/F-m and P-n did not reach the level as in those leaves grown in the full sunlight ever before. The final P-n was higher by 60% than that before exposure, but lower for more than 40% than that of the full sunlight-grown leaves. The most notable response of chloroplast pigment composition was a pronounced increase in the pool size of carotenoids in xanthophyll cycle over a period of 3 d. The results indicated that when shade-grown cotton seedlings were suddenly transferred to the full sunlight, the decline of F-v/F-m and P-n might associate with the damage of the PS II reaction center. During the light acclimation, photoprotective mechanisms such as the xanthophyll cycle-dependent energy dissipation were increased, so that photodamage in leaves transferred from low to high light might be reduced.
文摘Selection of fire resistant tree species for the southwestern China and the planting of those species can effectively prevent large area's fire damage. In this paper the components and flammability of leaves, twigs and barks of 12 tree species in the mountain area of southwestern China have been tested and analyzed in the laboratory. The test and analysis indicate the results as follows:(1) for all the tree species, the fire resistance of leaves is much weaker than that of twigs and barks, and the broad leaves are stronger than those of conifers in fire resistance. (2) Heat value, moisture, ignition point and ash content are main indexes to affect fire resistance. Heat value relates to lignose content and benzene ethanol extractive content linearly.(3) Of all the 12 tree species, Schima superba,Castanopsis hystrix, Myrica rubra have the strongest resistance to fire; Machilus pauhoi, Michelia macclurei, Mytilaria laosensis, Camellia olifera and Manglietia tenuipes are relatively strong in fire resistance, and Lithocapus thalassica, Tsoongiodendron odorum, Cunninghamia lanceolata and Pinus massoniana are weak in fire resistance.
基金Supported by Forestry Science and Technology Project of Hunan Province(XLK201406)~~
文摘In the research, four shading treatments were set, including the treatments with shading degrees at 0, 40%, 60% and 70%, in order to explore storage rate and seedling growth of annual Phoebe bournei. The results showed that the storage rate is growing upon shading degree. In the research, for example, storage rate reached the peak with the shading degree at 70%, and only 42.2% with shading degree at 0. In addition, seedling height and ground diameter showed extremely significant differences among treatments, and the treatment with shading degree at 60% was the best.
文摘Thirty genotypes from rice germplasm were identified under photooxidation and shading condition and divided into four basic types : (1) cultivars tolerant to both photooxidation and shading, (2) cultivars tolerant to photooxidation but sensitive to shading, (3) cultivars tolerant to shading but sensitive to photooxidation, and (4) cultivars sensitive to photooxidation and shading. A comparative study of photosynthetic characteristics of a cultivar (cv. Wuyujing 3) that is tolerant and a cultivar (cv. Xiangxian) that is sensitive to both photoinhibition and shading showed that the photochemical efficiency of PSⅡ ( F v/F m ) and the content of PSⅡ_D1 protein in the tolerant cultivar “Wuyujing 3” decreased less under photoinhibition conditions as compared with “Xiangxian”. Under photooxidation conditions, superoxide dismutase was induced rapidly to a higher level and the active oxygen O - built up to a lower level in “Wuyujing 3” than in “Xiangxian”. At the same time, the photosynthetic rate decreased by 23% in “Wuyujing 3” vs. 64% in “Xiangxian”. Shading (20% natural light) during the booting stage caused only small decreases (7%-13%) in RuBisCO activity and the photosynthetic rate in “Wuyujing 3” but showed marked decreases (57%-64%) in “Xiangxian” which corresponded to the decreases in grain yield in the two cultivars (38% and 73%, respectively). The correlation analysis showed that the tolerance to photooxidation is mainly related to PSⅡ_D1 and that to shading is mainly related to RuBisCO activity. This study provided a simple and effective screening method and physiological basis for crop breeding in enhancing tolerance to both high and low radiation.
文摘With annual Bischofia javanica seedlings as experimental material, the plasticity and comprehensive evaluation methods were employed to investigate the effects of different shading degrees (100% NS (natural sunshine), 41.3% NS, 14.6% NS and 3.6% NS) on B. javanica seedlings growth, so as to obtain the shade toler- ance in B. javanica. The results showed that with the shading degree increasing, the seedling height increment, diameter increment, leaf area, fresh weights (above- ground part, underground part and whole plant) and dry weights (aboveground part, underground part and whole plant) of B. javanica seedlings all increased first and then decreased, and reached peak values under 41.3% NS, while the total root length, average root diameter, total surface area, total root volume and total root number all presented a decreasing trend. Also the comprehensive evaluation by subordinate function value method and plasticity analysis were carried out on these growth indexes. It was concluded that B. javanica seedlings have medium shade tol- erance from the comDrehensive analysis of growth indexes.
基金Supported by the Corn Heat-resisting Resources Exploitation and Chain Molecular Marker Development(cstc2015jcyj BX0112)the Screening and Breeding of Feeding Maize Varieties in the Hilly and Mountain Areas(cstc2016shms-ztzx80017)+5 种基金the Functional Corn Germplasm Renounces Precise Identification and Material Innovation(cstc-2016shms-ztzx80013)the Breeding of Maize CMS Materials(2013cstc-jbky-00565)the Screening and Creation of High-temperature and Drought Resisting Corn Materials(2013cstc-jbky-00564)the Creation and Application of Shade-tolerant Corn Germplasm(cstc2016shmszx0218)the Special Fund for Scientific and Technological Innovation of Social People’s Livelihood of Chongqing Municipality-Molecular Analysis of Corn Kernel Accumulated Amylose and Development and Application of Genetic Specific Markers(cstc2015shmszx80029)the Innovation of Fine Varieties of Chongqing Academy of Agricultural Sciences-Research and Application of the Combining Ability of High-efficient Retrospective Improved Corn(NKY-2016AB004)~~
文摘Maize is an important food crop, as well as the irreplaceable feed and industrial materials, having huge market demand in China. Southwestern region of China is the third largest main maize producing zone, and the frequent occurrence of abiotic stress conditions such as drought, heat, cold, wet shaded stress have severely affected the development of maize production, causing low and unstable corn yields, severely restricting the maize industry development in the southwest of China. This paper preliminarily describes the maize resistance to abiotic stresses in southwestem region of China, putting forward the countermeasures and the key research direction in the practice of breeding in order to provide reference for the cultivation of new varieties with high yield and stress resistance, and improving the levels of maize stress resistance breeding in southwestern region of China.
文摘通过对由医疗成像设备获取的二维灰度图像进行形状重建,得到的三维立体原型能帮助医学诊断人员确诊病情。介绍了Shape from Shading的实现原理和扫描电镜成像系统的简单构成,提出了一种基于线性逼近的用于解决SEM反射映射函数的实现方法,并将之应用于红血细胞的三维图像重构,得到的细胞图形非常接近其真实形状。
基金Supported by the National"948"Import Program(2001-46)~~
文摘[Objective]The study was conducted to investigate the effects of shading treatments on growth of Asimina triloba (L) Dunal seedlings and provided the theoretical basis for seedling production. [Method]70 day-old A. triloba seedlings had similar stem diameter and plant height and good growth vigour were taken as tested materials in 2005. 4 light gradient treatments which were the natural light with 100% light intensity, one-layer, two-layer and three-layer black shading network with the light transmittance rate of 50%, 25% and 12.5% were set up to study the effects of different shading treatments on growth of A. triloba. [ Result] With the shading treatments of one-layer and two-layer net, the plants of A. triloba seedlings grew rapidly. As the intensity of illumination decreased, the cetents of chlorophyll a ( Chl. a), chlorophyll b ( Chl. b) and total chlorophyll increased at first and then reduced. At the same time the chlorophyll a/b value became smaller. Under natural light, the plants tended to consume more water and the soil temperature at 15:00 p. m was higher. There was a smaller difference among various treatments. [ Conclusion]The suitable shading treatment to the growth of A. triloba seedlings was under the light transmittance rate of 50% and height and stem diameter of trees increased fast. Chlorophyll a ( Chl. a), chlorophyll b ( Chl. b) content in leaves of A. triloba seedlings were highest comparing with those in other conditions.
基金Supported by the Research Foundation of Northeast Forestry University.
文摘Muehlewbeckia complera was introduced to China in 2002 as indoor-hanging ornamental foliage plant. The experiment of the shade tolerance for this species was carried out in different light intensities (0.14–946.00 μmol·m?2·s?1). After 40 days in experimental areas, leaf photosynthentic characteristics indexes ofM. complera in different photosynthesis active radiation (PAR) were measured with LI-COR6400 apparatus, such as the light compensation point, light saturation point, and maximum net photosynthesis rate, at the same time, the increments of total leaf area and leaf amount were measured. The results showed that the optimum light intensity range forM. complera was from 9.26 μmol·m?2·s?1 to 569.00 μmol·m?2·s?1 (463–28150 lx, relative humidity (RH) for 46–60%, temperature at 16–22°C). Under this condition, leaf photosynthetic efficiency was tiptop. AlthoughM. complera belonged to the moderate sun-adaptation plant species, the plant growth was inhibited when PAR increased to the level of 569.000 μmol·m?2·s?1 or above.M. complera could sprout new leaves in photosynthesis active radiation of 0.16–19.22 μmol·m?2·s?1 (8–961 lx), or 10 μmol·m?2·s?1 for above 6 h. Keywords Muehlewbeckia complera - Shade tolerance - Cultivation - Photosynthesis CLC number S602.1 Document code A Foundation item: This study was supported by the Research Foundation of Northeast Forestry University.Biography: YUE Hua (1962-), female, Associate professor in Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Zhu Hong
文摘Assuming uniform albedo and Lambertian surface for the imaging model, a new robust method for estimation of illuminant direction and albedo from shading is presented. If there is a singular point with maximum intensity in an image, the method use shading information of the singular point and its neighbors to estimate directly the elevation of illuminant direction, surface albedo, and the bias brightness. Some experiment results on synthetic images are given to illustrate the new approach is accurate and robust.