Height extraction for buildings is a fundamental step of 3D scene reconstruction in many virtual reality applications. In this paper, we propose an automatic method to extract the height of buildings in high resolutio...Height extraction for buildings is a fundamental step of 3D scene reconstruction in many virtual reality applications. In this paper, we propose an automatic method to extract the height of buildings in high resolution satellite imagery based on the length of shadow. Taking into account the limitation of traditional algorithms, we make use of the boundary information of a building to facilitate detecting and matching the shadow regions with higher accuracy. Then, we introduce a shadow-cast model to correct the shadow location in our system. The experimental result shows that when extracting the height of buildings from complex urban regions, our method has better accuracy.展开更多
An adaptive narrowband two-phase Chan-Vese (ANBCV) model is proposed for improving the shadow regions detection performance of sonar images. In the first noise smoothing step, the anisotropic second-order neighborho...An adaptive narrowband two-phase Chan-Vese (ANBCV) model is proposed for improving the shadow regions detection performance of sonar images. In the first noise smoothing step, the anisotropic second-order neighborhood MRF (Markov Random Field, MRF) is used to describe the image texture feature parameters. Then, initial two-class segmentation is processed with the block mode k-means clustering algorithm, to estimate the approximate position of the shadow regions. On this basis, the zero level set function is adaptively initialized by the approximate position of shadow regions. ANBCV model is provided to complete local optimization for eliminating the image global interference and obtaining more accurate results. Experimental results show that the new algorithm can efficiently remove partial noise, increase detection speed and accuracy, and with less human intervention.展开更多
基金Supported by National Natural Science Foundation of China(61232014,61421062,61472010)the National Key Technology R&D Program of China(2015BAK01B06)
文摘Height extraction for buildings is a fundamental step of 3D scene reconstruction in many virtual reality applications. In this paper, we propose an automatic method to extract the height of buildings in high resolution satellite imagery based on the length of shadow. Taking into account the limitation of traditional algorithms, we make use of the boundary information of a building to facilitate detecting and matching the shadow regions with higher accuracy. Then, we introduce a shadow-cast model to correct the shadow location in our system. The experimental result shows that when extracting the height of buildings from complex urban regions, our method has better accuracy.
基金supported by the National Natural Science Foundation of China(41306086)Technology Innovation Talent Special Foundation of Harbin(2014RFQXJ105)the Fundamental Research Funds for the Central Universities(HEUCF100606)
文摘An adaptive narrowband two-phase Chan-Vese (ANBCV) model is proposed for improving the shadow regions detection performance of sonar images. In the first noise smoothing step, the anisotropic second-order neighborhood MRF (Markov Random Field, MRF) is used to describe the image texture feature parameters. Then, initial two-class segmentation is processed with the block mode k-means clustering algorithm, to estimate the approximate position of the shadow regions. On this basis, the zero level set function is adaptively initialized by the approximate position of shadow regions. ANBCV model is provided to complete local optimization for eliminating the image global interference and obtaining more accurate results. Experimental results show that the new algorithm can efficiently remove partial noise, increase detection speed and accuracy, and with less human intervention.