期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
On the effect of pitch and yaw angles in oblique impacts of smallcaliber projectiles
1
作者 Teresa Fras 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期73-94,共22页
A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combin... A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance. 展开更多
关键词 Ballistic impact Small-caliber projectile Pitch and yaw impact angles shadowgraphy IMPETUS Afea Numerical simulations
下载PDF
Measurements of the ablation-front trajectory and low-mode nonuniformity in direct-drive implosions using x-ray self-emission shadowgraphy
2
作者 D.T.Michel A.K.Davis +11 位作者 W.Armstrong R.Bahr R.Epstein V.N.Goncharov M.Hohenberger I.V.Igumenshchev R.Jungquist D.D.Meyerhofer P.B.Radha T.C.Sangster C.Sorce D.H.Froula 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2015年第3期20-27,共8页
Self-emission x-ray shadowgraphy provides a method to measure the ablation-front trajectory and low-mode nonuniformity of a target imploded by directly illuminating a fusion capsule with laser beams. The technique use... Self-emission x-ray shadowgraphy provides a method to measure the ablation-front trajectory and low-mode nonuniformity of a target imploded by directly illuminating a fusion capsule with laser beams. The technique uses time-resolved images of soft x-rays(>1 ke V) emitted from the coronal plasma of the target imaged onto an x-ray framing camera to determine the position of the ablation front. Methods used to accurately measure the ablation-front radius(δ R= ±1.15 μm), image-to-image timing(δ( t)= ±2.5 ps) and absolute timing(δt= ±10 ps) are presented.Angular averaging of the images provides an average radius measurement of δ( Rav)= ±0.15 μm and an error in velocity of δV / V= ±3%. This technique was applied on the Omega Laser Facility [Boehly et al., Opt. Commun. 133, 495(1997)] and the National Ignition Facility [Campbell and Hogan, Plasma Phys. Control. Fusion 41, B39(1999)]. 展开更多
关键词 low mode nonuiformity nuclear fusion self-emission shadowgraphy shell TRAJECTORY
原文传递
Plasma and nanoparticle shielding during pulsed laser ablation in liquids cause ablation efficiency decrease 被引量:8
3
作者 Sarah Dittrich Stephan Barcikowski Bilal Gökce 《Opto-Electronic Advances》 SCIE 2021年第1期1-13,共13页
Understanding shielding cross-effects is a prerequisite for maximal power-specific nanosecond laser ablation in liquids(LAL).However,discrimination between cavitation bubble(CB),nanoparticle(NP),and shielding,e.g.,by ... Understanding shielding cross-effects is a prerequisite for maximal power-specific nanosecond laser ablation in liquids(LAL).However,discrimination between cavitation bubble(CB),nanoparticle(NP),and shielding,e.g.,by the plasma or a transient vapor layer,is challenging.Therefore,CB imaging by shadowgraphy is performed to better understand the plasma and laser beam-NP interaction during LAL.By comparing the fluence-dependent CB volume for ablations performed with 1 ns pulses with reports from the literature,we find larger energy-specific CB volumes for 7 ns-ablation.The increased CB for laser ablation with higher ns pulse durations could be a first explanation of the efficiency decrease reported for these laser systems having higher pulse durations.Consequently,1 ns-LAL shows superior ablation efficiency.Moreover,a CB cascade occurs when the focal plane is shifted into the liquid.This effect is enhanced when NPs are present in the fluid.Even minute amounts of NPs trapped in a stationary layer decrease the laser energy significantly,even under liquid flow.However,this local concentration in the sticking film has so far not been considered.It presents an essential obstacle in high-yield LAL,shielding already the second laser pulse that arrives and presenting a source of satellite bubbles.Hence,measures to lower the NP concentration on the target must be investigated in the future. 展开更多
关键词 shadowgraphy power-specific productivity flow dynamics ablation mechanism
下载PDF
Ultrafast dynamics observation during femtosecond laser-material interaction 被引量:11
4
作者 Baoshan Guo Jingya Sun +1 位作者 YongFeng Lu Lan Jiang 《International Journal of Extreme Manufacturing》 2019年第3期62-84,共23页
Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material inte... Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material interaction.Under the extreme nonequilibrium conditions imposed by femtosecond laser irradiation,many fundamental questions concerning the physical origin of the material removal process remain unanswered.In this review,cutting-edge ultrafast dynamic observation techniques for investigating the fundamental questions,including timeresolved pump-probe shadowgraphy,ultrafast continuous optical imaging,and four-dimensional ultrafast scanning electron microscopy,are comprehensively surveyed.Each technique is described in depth,beginning with its basic principle,followed by a description of its representative applications in laser-material interaction and its strengths and limitations.The consideration of temporal and spatial resolutions and panoramic measurement at different scales are two major challenges.Hence,the prospects for technical advancement in this field are discussed finally. 展开更多
关键词 ultrafast dynamics pump-probe shadowgraphy ultrafast continuous optical imaging 4D ultrafast scanning electron microscopy femtosecond laser manufacturing
下载PDF
Shadowgraphic Imaging of Fibre-Delivered Pulsed IR Laser-Induced Heat Transfer across Thin Aluminized Polymer Film
5
作者 Mohammad E. Khosroshahi 《Optics and Photonics Journal》 2018年第4期75-89,共15页
Shadowgraphic imaging was employed to investigate the mid-IR laser induced heat transfer through a double layer thin film. The effect of thin metal coat on the polymer film enhanced the transfer of heat and shock wave... Shadowgraphic imaging was employed to investigate the mid-IR laser induced heat transfer through a double layer thin film. The effect of thin metal coat on the polymer film enhanced the transfer of heat and shock waves due to rapid thermal expansion and the explosive evaporation of the thin fluid layer. Sixty two percent of deposited heat expended for water enthalpy and 38% for other factors. A power of 8.8 kW was launched at the surface of aluminium. The thermal coupling of 45% further reduced the input energy to the film and the non-adiabatic heat diffusion (i.e., ) was transmitted instantaneously within the metal with very small loss. The temperature at the surface of the film was determined ≈301 K, well below the aluminium melting point. The Biot number showed that the metal as single layer and the whole film as double layer satisfies the thermally thin film (i.e., ). Considering the Newtons’s law of cooling, the overall film heat transfer coefficient was found 3 k W·m-2·K-1 equivalent of 3.3 × 10-3 W·m2·K-1 thermal resistance. The analysis of images indicated a reducing percentage of heat transfer as a function of delay time based on the comparison of volume ratios. A calculated power of ≈3 kW was transmitted from the rear side of the film sufficient to thermalize the surrounding water layer and form vapor bubble. 展开更多
关键词 THIN Film Heat Transfer IR Laser Optical FIBRE shadowgraphy
下载PDF
Synchronized off-harmonic probe laser with highly variable pulse duration for laser-plasma interaction experiments
6
作者 J.Hornung Y.Zobus +3 位作者 H.Lorenté C.Brabetz B.Zielbauer V.Bagnoud 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2024年第1期99-107,共9页
This paper presents the development and experimental utilization of a synchronized off-harmonic laser system designed as a probe for ultra-intense laser±plasma interaction experiments. The system exhibits a novel... This paper presents the development and experimental utilization of a synchronized off-harmonic laser system designed as a probe for ultra-intense laser±plasma interaction experiments. The system exhibits a novel seed-generation design,allowing for a variable pulse duration spanning over more than three orders of magnitude, from 3.45 picoseconds to 10 nanoseconds. This makes it suitable for various plasma diagnostics and visualization techniques. In a side-view configuration, the laser was employed for interferometry and streaked shadowgraphy of a laser-induced plasma while successfully suppressing the self-emission background of the laser±plasma interaction, resulting in a signal-to-self-emission ratio of 110 for this setup. These properties enable the probe to yield valuable insights into the plasma dynamics and interactions at the PHELIX facility and to be deployed at various laser facilities due to its easy-to-implement design. 展开更多
关键词 INTERFEROMETRY laser-plasma interaction off-harmonic probe laser streaked shadowgraphy
原文传递
A High-speed Nature Laminar Flow Airfoil and Its Experimental Study in Wind Tunnel with Nonintrusive Measurement Technique 被引量:8
7
作者 朱军 高正红 +1 位作者 詹浩 白俊强 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第3期225-229,共5页
This article deals with an experimental study on the aerodynamic characteristics of a low-drag high-speed nature laminar flow (NLF) airfoil for business airplanes in the TST27 wind tunnel at Delft University of Techno... This article deals with an experimental study on the aerodynamic characteristics of a low-drag high-speed nature laminar flow (NLF) airfoil for business airplanes in the TST27 wind tunnel at Delft University of Technology, the Netherlands. In this experiment, in an attempt to reduce the errors of measurement and improve its accuracy in high-speed flight, some nonintrusive meas- urement techniques, such as the quantitative infrared thermography (IRT), the digital particle imaging velocimetry (PIV), and the s... 展开更多
关键词 wind tunnels particle imaging velocimetry infrared thermography shadowgraphy high-speed nature laminar flow airfoil
原文传递
Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing 被引量:11
8
作者 Robert Kammel Roland Ackermann +4 位作者 Jens Thomas Jorg Gotte Stefan Skupin Andreas Tunnermann Stefan Nolte 《Light(Science & Applications)》 SCIE EI CAS 2014年第1期223-230,共8页
In recent years,femtosecond(fs)-lasers have evolved into a versatile tool for high precision micromachining of transparent materials because nonlinear absorption in the focus can result in refractive index modificatio... In recent years,femtosecond(fs)-lasers have evolved into a versatile tool for high precision micromachining of transparent materials because nonlinear absorption in the focus can result in refractive index modifications or material disruptions.However,when high pulse energies or low numerical apertures are required,nonlinear side effects such as self-focusing,filamentation or white light generation can decrease the modification quality.In this paper,we apply simultaneous spatial and temporal focusing(SSTF)to overcome these limitations.The main advantage of SSTF is that the ultrashort pulse is only formed at the focal plane,thereby confining the intensity distribution strongly to the focal volume and suppressing detrimental nonlinear side effects.Thus,we investigate the optical breakdown within a water cell by pump-probe shadowgraphy,comparing conventional focusing and SSTF under equivalent focusing conditions.The plasma formation is well confined for low pulse energies,2 mJ,but higher pulse energies lead to the filamentation and break-up of the disruptions for conventional focusing,thereby decreasing the modification quality.In contrast,plasma induced by SSTF stays well confined to the focal plane,even for high pulse energies up to 8 mJ,preventing extended filaments,side branches or break-up of the disruptions.Furthermore,while conventional focusing leads to broadband supercontinuum generation,only marginal spectral broadening is observed using SSTF.These experimental findings are in excellent agreement with numerical simulations of the nonlinear pulse propagation and interaction processes.Therefore,SSTF appears to be a powerful tool to control the processing of transparent materials,e.g.,for precise ophthalmic fs-surgery. 展开更多
关键词 FILAMENTATION fs-laser surgery laser-induced optical breakdown materials processing plasma shadowgraphy
原文传递
INVESTIGATION ON INHOMOGENEOUS STRUCTURES IN LASER-PRODUCED PLASMA
9
作者 江志明 徐至展 +3 位作者 孟绍贤 张伟清 林礼煌 陈时胜 《Science China Mathematics》 SCIE 1989年第9期1139-1145,共7页
The optical shadowgraphy has been used to investigate the inhomogeneous structures in laser-produced plasmas, especially the small-scale jet structure on the rearside of the A1 foil target due to hydrodynamic instabil... The optical shadowgraphy has been used to investigate the inhomogeneous structures in laser-produced plasmas, especially the small-scale jet structure on the rearside of the A1 foil target due to hydrodynamic instability. 展开更多
关键词 shadowgraphy laser-produced PLASMA JET structure instability.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部