Through thermal test, cold state experiment, analysis and simulation of thermal process, the gas flow distribution in pelletizing shaft furnace (PSF) was discussed. The results show that there are five flowing trend...Through thermal test, cold state experiment, analysis and simulation of thermal process, the gas flow distribution in pelletizing shaft furnace (PSF) was discussed. The results show that there are five flowing trends among them, the downward roasting gas and the upward cooling gas are the most unsteady, which influence flow distribution greatly. Among the operating parameters, the ratio of inflow is a key factor affecting the flow distribution. The roasting and cooling gases will entirely flow into the roasting zone and internal vertical air channels (IVAC), respectively, if the ratio of inflow is critical. From such a critical operating condition increasing roasting gas flow or decreasing cooling gas flow, the roasting gas starts flowing downwards so as to enter the inside of IVAC the greater the ratio of inflow, the larger the downward flowrate. Among constructional parameters, the width of roasting zone b1, width of IVAC b2 and width of cooling zone b3, and the height of roasting zone h1, height of soaking zone h2 and height of cooling zone hs are the main factors affecting flow distribution. In case the ratio of b2/b3, or h3/h2, or h1/h2 is increased, the upward cooling gas tends to decrease while the downward roasting gas tends to increase with a gradual decrease in the ratio of inflow.展开更多
In the paper the three-dimensional flow fields are numerically simulated in the vertical-shaft mechanical mix tank of a water treatment plant by means of FLUENT software based on the method of Computational Fluid Dyna...In the paper the three-dimensional flow fields are numerically simulated in the vertical-shaft mechanical mix tank of a water treatment plant by means of FLUENT software based on the method of Computational Fluid Dynamics (CFD). The influences of design parameters on flow fields and the mixing effect are analyzed. Firstly,the prediction capability of the turbulence model adopted in simulations is evaluated. And then,the mesh independence is checked up. Finally,the flow fields in various dimensionless blade diameters and dimensionless shaft spans are numerically simulated respectively. The results have shown that the numerical simulation method based on CFD is a feasible assistance for the optimal designs of mixers. Moreover,the optimal design of the blade diameter should take into account both the flow field and the power consumption. The optimization of the shaft span is to achieve a relatively even distribution of the flow field without any rupture. With the consideration of an optimal design,the dimensionless blade diameter and dimensionless shaft span should be 0.45 and 0.57 respectively in the case.展开更多
In this paper,we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case(PPTC)in oblique flow.For our calculations,we used the Reynolds-averaged Navier-Stokes...In this paper,we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case(PPTC)in oblique flow.For our calculations,we used the Reynolds-averaged Navier-Stokes equation(RANSE)solver from the open-source OpenFOAM libraries.We selected the homogeneous mixture approach to solve for multiphase flow with phase change,using the volume of fluid(VoF)approach to solve the multiphase flow and modeling the mass transfer between vapor and water with the Schnerr-Sauer model.Comparing the model results with the experimental measurements collected during the SecondWorkshop on Cavitation and Propeller Performance– SMP’15 enabled our assessment of the reliability of the open-source calculations.Comparisons with the numerical data collected during the workshop enabled further analysis of the reliability of different flow solvers from which we produced an overview of recommended guidelines(mesh arrangements and solver setups)for accurate numerical prediction even in off-design conditions.Lastly,we propose a number of calculations using the boundary element method developed at the University of Genoa for assessing the reliability of this dated but still widely adopted approach for design and optimization in the preliminary stages of very demanding test cases.展开更多
The distribution of reducing gas in a shaft furnace dominates the temperature profile,gas utilization ratio,metallization degree and is the overwhelming factor for stable,high productivities and low-energy-consumption...The distribution of reducing gas in a shaft furnace dominates the temperature profile,gas utilization ratio,metallization degree and is the overwhelming factor for stable,high productivities and low-energy-consumption operation.At the same time,the distribution of gas flow is mainly determined by the position of gas inlet,the packed bed porosity distribution as well as its change due to the difference on the mode of top charge and bottom discharge.When injecting position of the process is fixed,the charge mode is the only means for regulating the gas flow distribution.In this paper,a numerical simulation model of burden distribution in the shaft furnace of COREX 3000 has been developed to analyze the porosity distribution under the different charge modes by means of Discrete Element Method(DEM).The effects of the particle size and its distribution under conditions of different charge batches,chute angle,stoke line on the burden surface shape and burden bed particle size distribution and segregation were investigated,and then the porosity distribution in the shaft of corresponding charging pattern was quantitatively accessed.Therefore,the results can be used to optimize the charge patterns base on required gas distribution.展开更多
The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines(half circular blades disk turbine, half el...The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines(half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a "rising-falling-rising" trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the "falling" stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines.展开更多
基金ItemSponsored by National Natural Science Foundation of China (50334020) National Key Fundamental Research andDevelopment Project of China (2000026300)
文摘Through thermal test, cold state experiment, analysis and simulation of thermal process, the gas flow distribution in pelletizing shaft furnace (PSF) was discussed. The results show that there are five flowing trends among them, the downward roasting gas and the upward cooling gas are the most unsteady, which influence flow distribution greatly. Among the operating parameters, the ratio of inflow is a key factor affecting the flow distribution. The roasting and cooling gases will entirely flow into the roasting zone and internal vertical air channels (IVAC), respectively, if the ratio of inflow is critical. From such a critical operating condition increasing roasting gas flow or decreasing cooling gas flow, the roasting gas starts flowing downwards so as to enter the inside of IVAC the greater the ratio of inflow, the larger the downward flowrate. Among constructional parameters, the width of roasting zone b1, width of IVAC b2 and width of cooling zone b3, and the height of roasting zone h1, height of soaking zone h2 and height of cooling zone hs are the main factors affecting flow distribution. In case the ratio of b2/b3, or h3/h2, or h1/h2 is increased, the upward cooling gas tends to decrease while the downward roasting gas tends to increase with a gradual decrease in the ratio of inflow.
基金Sponsored by the Science and Technology Projects of Heilongjiang Province (Grant No.GB07C20202 and LC06C16)
文摘In the paper the three-dimensional flow fields are numerically simulated in the vertical-shaft mechanical mix tank of a water treatment plant by means of FLUENT software based on the method of Computational Fluid Dynamics (CFD). The influences of design parameters on flow fields and the mixing effect are analyzed. Firstly,the prediction capability of the turbulence model adopted in simulations is evaluated. And then,the mesh independence is checked up. Finally,the flow fields in various dimensionless blade diameters and dimensionless shaft spans are numerically simulated respectively. The results have shown that the numerical simulation method based on CFD is a feasible assistance for the optimal designs of mixers. Moreover,the optimal design of the blade diameter should take into account both the flow field and the power consumption. The optimization of the shaft span is to achieve a relatively even distribution of the flow field without any rupture. With the consideration of an optimal design,the dimensionless blade diameter and dimensionless shaft span should be 0.45 and 0.57 respectively in the case.
文摘In this paper,we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case(PPTC)in oblique flow.For our calculations,we used the Reynolds-averaged Navier-Stokes equation(RANSE)solver from the open-source OpenFOAM libraries.We selected the homogeneous mixture approach to solve for multiphase flow with phase change,using the volume of fluid(VoF)approach to solve the multiphase flow and modeling the mass transfer between vapor and water with the Schnerr-Sauer model.Comparing the model results with the experimental measurements collected during the SecondWorkshop on Cavitation and Propeller Performance– SMP’15 enabled our assessment of the reliability of the open-source calculations.Comparisons with the numerical data collected during the workshop enabled further analysis of the reliability of different flow solvers from which we produced an overview of recommended guidelines(mesh arrangements and solver setups)for accurate numerical prediction even in off-design conditions.Lastly,we propose a number of calculations using the boundary element method developed at the University of Genoa for assessing the reliability of this dated but still widely adopted approach for design and optimization in the preliminary stages of very demanding test cases.
文摘The distribution of reducing gas in a shaft furnace dominates the temperature profile,gas utilization ratio,metallization degree and is the overwhelming factor for stable,high productivities and low-energy-consumption operation.At the same time,the distribution of gas flow is mainly determined by the position of gas inlet,the packed bed porosity distribution as well as its change due to the difference on the mode of top charge and bottom discharge.When injecting position of the process is fixed,the charge mode is the only means for regulating the gas flow distribution.In this paper,a numerical simulation model of burden distribution in the shaft furnace of COREX 3000 has been developed to analyze the porosity distribution under the different charge modes by means of Discrete Element Method(DEM).The effects of the particle size and its distribution under conditions of different charge batches,chute angle,stoke line on the burden surface shape and burden bed particle size distribution and segregation were investigated,and then the porosity distribution in the shaft of corresponding charging pattern was quantitatively accessed.Therefore,the results can be used to optimize the charge patterns base on required gas distribution.
基金Supported by the National Key R&D Program of China(2017YFB0306704)the National Natural Science Foundation of China(21676007)
文摘The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines(half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a "rising-falling-rising" trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the "falling" stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines.