Numerical simulation was used to estimate the temperature field within a poured concrete,mono-layer freezing-shaft lining.The affects from various factors were investigated.The maximum temperature within the lining in...Numerical simulation was used to estimate the temperature field within a poured concrete,mono-layer freezing-shaft lining.The affects from various factors were investigated.The maximum temperature within the lining increases as the lining thickness increases,decreases as the soil-side wall temperature decreases,decreases as the air temperature inside the shaft decreases and decreases as the air velocity inside the shaft increases.The compression speed of an insulating foam layer affects the maximum temperature difference between the interior and the sidewalls.The maximum temperature difference between the interior and the sidewalls approaches or exceeds the maximum allowable for the curing of poured concrete structures.Attention should be paid to the question of the lining cracking during the curing period.The temperature gradient in the vertical direction may be minimized by preventing air contact against the steel connection board supporting the base of the freshly poured section.展开更多
The situation of mine development in coal industry of China and the method of shaft freezing in the type of double ring freezing pipe used for shaft sinking under thick alluvium condition are briefly reviewed. The equ...The situation of mine development in coal industry of China and the method of shaft freezing in the type of double ring freezing pipe used for shaft sinking under thick alluvium condition are briefly reviewed. The equations of heat conduction are numerically solved for two kinds of artificial shaft freezing-sin-gle and double ring freezing pipe pattern. A two-dimensional finite difference model simulating the temperature field is developed. The paper introduces a way to calculate the harmonic mean of heat conductivety used when dealing with heterogeneous material, The theoretically derived temperature distributions in frozen soil are given and the comparison is made between two types of freezing pipe arrangement. The optimization technique of a general simulation is discussed, and that is in use to improve the thermal system in shaft freezing.展开更多
Freeze-thaw hazard is one of the main problems in cold regions engineering and artificial ground freezing engineering.To mitigate freeze-thaw hazards,it is essential to investigate the effects of freeze-thaw on soils ...Freeze-thaw hazard is one of the main problems in cold regions engineering and artificial ground freezing engineering.To mitigate freeze-thaw hazards,it is essential to investigate the effects of freeze-thaw on soils engineering properties.This paper summarizes the effects of freeze-thaw on the physical and mechanical properties of soils reported in recent studies.The differences of freeze-thaw conditions between freezing shaft sinking and cold regions engineering are discussed.Based on the technological characteristics of freezing shaft sinking in deep alluvium,we further attempt to identify key research needs regarding the freeze-thaw effects on the engineering properties of deep soils.展开更多
基金provided by the Office of National Science and Technology (No.2006BAB16B01)the Physics Program of the Henan Province Education Department (No.2009B 560004)the Doctoral Fund of Henan Polytechnic University (No.648234)
文摘Numerical simulation was used to estimate the temperature field within a poured concrete,mono-layer freezing-shaft lining.The affects from various factors were investigated.The maximum temperature within the lining increases as the lining thickness increases,decreases as the soil-side wall temperature decreases,decreases as the air temperature inside the shaft decreases and decreases as the air velocity inside the shaft increases.The compression speed of an insulating foam layer affects the maximum temperature difference between the interior and the sidewalls.The maximum temperature difference between the interior and the sidewalls approaches or exceeds the maximum allowable for the curing of poured concrete structures.Attention should be paid to the question of the lining cracking during the curing period.The temperature gradient in the vertical direction may be minimized by preventing air contact against the steel connection board supporting the base of the freshly poured section.
文摘The situation of mine development in coal industry of China and the method of shaft freezing in the type of double ring freezing pipe used for shaft sinking under thick alluvium condition are briefly reviewed. The equations of heat conduction are numerically solved for two kinds of artificial shaft freezing-sin-gle and double ring freezing pipe pattern. A two-dimensional finite difference model simulating the temperature field is developed. The paper introduces a way to calculate the harmonic mean of heat conductivety used when dealing with heterogeneous material, The theoretically derived temperature distributions in frozen soil are given and the comparison is made between two types of freezing pipe arrangement. The optimization technique of a general simulation is discussed, and that is in use to improve the thermal system in shaft freezing.
基金supported by the National Natural Science Foundation of China(Grant No.41771072)Jiangsu Province Innovation and Entrepreneurship Training program for University Students(Grant No.202010290171H).
文摘Freeze-thaw hazard is one of the main problems in cold regions engineering and artificial ground freezing engineering.To mitigate freeze-thaw hazards,it is essential to investigate the effects of freeze-thaw on soils engineering properties.This paper summarizes the effects of freeze-thaw on the physical and mechanical properties of soils reported in recent studies.The differences of freeze-thaw conditions between freezing shaft sinking and cold regions engineering are discussed.Based on the technological characteristics of freezing shaft sinking in deep alluvium,we further attempt to identify key research needs regarding the freeze-thaw effects on the engineering properties of deep soils.