The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditi...The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditions developed from the first-order shear deformation theory (FSDT). The equations of motion are obtained applying Hamilton's concept, which contain the influence of the centrifugal force, the Coriolis acceleration, and the preliminary hoop stress. In addition, the axial load is applied to the conical shell as a ratio of the global critical buckling load. The governing partial differential equations are given in the expressions of five components of displacement related to the points ly- ing on the reference surface of the shell. Afterward, the governing differential equations are converted into a group of algebraic equations by using the GDQM. The outcomes are achieved considering the effects of stacking sequences, thickness of the shell, rotating velocities, half-vertex cone angle, and boundary conditions. Furthermore, the outcomes indicate that the rate of the convergence of frequencies is swift, and the numerical tech- nique is superior stable. Three comparisons between the selected outcomes and those of other research are accomplished, and excellent agreement is achieved.展开更多
The influence of multipass high rotating speed friction stir processing(FSP)on the microstructure evolution,corrosion behavior,and tensile properties of the stirred zone(SZ)was investigated by EBSD,TEM,SEM,electrochem...The influence of multipass high rotating speed friction stir processing(FSP)on the microstructure evolution,corrosion behavior,and tensile properties of the stirred zone(SZ)was investigated by EBSD,TEM,SEM,electrochemical workstation and electronic universal testing machine.The mean grain size of the SZ is significantly refined,and it increases with the increase of the processing pass.In addition to an obvious increase in the number,the distribution ofβ-Al12Mg17 precipitates also becomes more uniform and dispersed with increasing the processing pass.Compared with the as-received AZ31 alloy,the tensile properties of the SZ are hardly improved,but the corrosion resistances are significantly enhanced.The corrosion potential of the SZ prepared by 4-pass FSP is increased from−1.56 V for the unprocessed AZ31 alloy to−1.19 V,while the corrosion current is decreased from 1.55×10^−4 to 5.47×10^−5 A.展开更多
In order to control the accumulation of SiC ceramic particles on the wall of the rotating chamber in the frame of a dry granulation process,the effect of the wall reverse speed on the mixing process is investigated.In...In order to control the accumulation of SiC ceramic particles on the wall of the rotating chamber in the frame of a dry granulation process,the effect of the wall reverse speed on the mixing process is investigated.In particular,an Euler-Euler two-phase flow model is used to analyze the dynamics of both SiC particles and air.The numerical results show that by setting a certain reverse rotating speed of the rotating chamber,the accumulation of SiC particles on the wall can be improved,i.e.,their direction of motion in proximity to the wall can be changed and particles can be forced to re-join the granulation process.Experimental tests conducted to verify the reliability of the numerical findings,demonstrate that when the reverse rotating speed of the rotating chamber is 4 r/min,the sphericity of SiC particles in the rotating chamber is the highest and the fluidity is the best possible one.展开更多
Rotating flows represent a very interesting area for researchers and industry for their extensive use in industrial and domestic machinery and especially for their great energy potential, annular flows are an example ...Rotating flows represent a very interesting area for researchers and industry for their extensive use in industrial and domestic machinery and especially for their great energy potential, annular flows are an example that draws the attention of researchers in recent years. The best design and optimization of these devices require knowledge of thermal, mechanical and hydrodynamic characteristics of flows circulating in these devices. An example of hydrodynamic parameters is the speed of rotation of the moving walls. This work is to study numerically the influence of the rotating speed ratio Γ of the two moving cylinders on the mean and especially on the turbulent quantities of the turbulent flow in the annular space. The numerical simulation is based on one-point statistical modeling using a low Reynolds number second-order full stress transport closure (RSM model), simulation code is not a black box but a completely transparent code where we can intervene at any step of the calculation. We have varied Γ from -1.0 to 1.0 while maintaining always the external cylinder with same speed Ω. The results show that the turbulence structure, profiles of mean velocities and the nature of the boundary layers of the mobile walls depend enormously on the ratio of speeds. The level of turbulence measured by the kinetic energy of turbulence and the Reynolds stresses shows well that the ratio Γ is an interesting parameter to exploit turbulence in this kind of annular flows.展开更多
The influence of rotating speed on metal transfer and the wire metal speed was studied in the high rotating speed arc narrow gap welding.The results indicate that the high rotating speed arc has benefit on the metal t...The influence of rotating speed on metal transfer and the wire metal speed was studied in the high rotating speed arc narrow gap welding.The results indicate that the high rotating speed arc has benefit on the metal transfer,and that with the rotating speed increasing,the droplet volume decreases.It is shown that the rotating speed has little influence on the wire metal speed with DC electrode positive polarity(DCEP),but the melting speed decreases with increasing of rotating speed in DC electrode negative polarity(DCEN).展开更多
The rotating speed fluctuation for turbomachinery is a common problem, which will cause severe destruction for equipments and basis when the fluctuation is very strong. In this paper,in order to study the transient re...The rotating speed fluctuation for turbomachinery is a common problem, which will cause severe destruction for equipments and basis when the fluctuation is very strong. In this paper,in order to study the transient response characteristics of a radial vane pump subjected to slight( 5%) and strong( 20%)fluctuating rotational speeds, the variation characteristics of the external hydraulic performances are numerically predicted by means of computational fluid dynamics( CFD) technology. The results manifest that the responses of head and flow rate are different relative to the fluctuating characteristics of rotational speed. The response of the former is very satisfied in synchronism,while that of the latter is hysteretic. Meanwhile,it is found that the variation tendencies of the static pressures at the inlet and outlet of the pump are completely opposite, while the response characteristics of the dynamic pressures at the inlet and outlet are nearly identical.Subsequently,in order to further reveal the transient behavior during the instantaneous operating periods,two non-dimensional parameters are employed to deeply analyze it. The result shows that the variation tendencies of these two parameters are also approximately opposite.Moreover,the quasi-steady assumption is not able to be used to accurately assess the transient flow during transient operating periods. The comparison results show that the transient behavior does not show obvious distinctions between slight and strong fluctuating rotating speeds.展开更多
Stationary shoulder friction stir lap welding (SSFSLW) was successfully used to weld 6005A-T6 aluminum alloy in this paper. Effect of pin rotating speed on cross section morphologies and lap shear strength of the SS...Stationary shoulder friction stir lap welding (SSFSLW) was successfully used to weld 6005A-T6 aluminum alloy in this paper. Effect of pin rotating speed on cross section morphologies and lap shear strength of the SSFSLW joints were mainly discussed. Results show that joints without flash and shoulder marks can be obtained by the stationary shoulder. Cross section of the SSFSLW joint presents a basin-like morphology and little material loss. By increasing the rotating speed from 1 000 rpm to 1 600 rpm, both effective sheet thickness and lap width increase, while lap shear failure load firstly decreases and then increases. The maximum failure load of 14. 05 kN /s attained when 1 000 rpm is used. All SSFSLW joints present shear fracture mode.展开更多
Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and m...Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and mechanical performance of the Al-Mg-Si alloy plate repaired by the preheating-assisted AFSD process were investigated.To evaluate the tool rotation speed and substrate preheating for repair quality,the AFSD technique was used to additively repair 5 mm depth blind holes on 6061 aluminum alloy substrates.The results showed that preheat-assisted AFSD repair significantly improved joint bonding and joint strength compared to the control non-preheat substrate condition.Moreover,increasing rotation speed was also beneficial to improve the metallurgical bonding of the interface and avoid volume defects.Under preheating conditions,the UTS and elongation were positively correlated with rotation speed.Under the process parameters of preheated substrate and tool rotation speed of 1000 r/min,defect-free specimens could be obtained accompanied by tensile fracture occurring in the substrate rather than the repaired zone.The UTS and elongation reached the maximum values of 164.2MPa and 13.4%,which are equivalent to 99.4%and 140%of the heated substrate,respectively.展开更多
Microdroplets and their dispersion,with a large specific surface area and a short diffusion distance,have been applied in various unit operations and reaction processes.However,it is still a challenge to control the s...Microdroplets and their dispersion,with a large specific surface area and a short diffusion distance,have been applied in various unit operations and reaction processes.However,it is still a challenge to control the size and size distribution of microdroplets,especially for high-throughput generation.In this work,a novel ultra-high speed rotating packed bed(UHS-RPB)was invented,in which rotating foam packing with a speed of 4000-12000 r·min^(-1) provides microfluidic channels to disperse liquid into microdroplets with high throughput.Then generated microdroplets can be directly dispersed into a continuous falling film for obtaining a mixture of microdroplet dispersion.In this UHS-RPB,the effects of rotational speed,liquid initial velocity,liquid viscosity,liquid surface tension and packing pore size on the average size(d_(32))and size distribution of microdroplets were systematically investigated.Results showed that the UHS-RPB could produce microdroplets with a d_(32) of 25-63μm at a liquid flow rate of 1025 L·h^(-1),and the size distribution of the microdroplets accords well with Rosin-Rammler distribution model.In addi-tion,a correlation was established for the prediction of d_(32),and the predicted d_(32) was in good agreement with the experimental data with a deviation within±15%.These results demonstrated that UHS-RPB could be a promising candidate for controllable preparation of uniform microdroplets.展开更多
In order to satisfy the requirement of high precision measurement in a high dynamic environment, a kind of gyro aided multi-accelerometer inertial measurement unit (GAMA-IMU) with six accelerometers and two gyros (...In order to satisfy the requirement of high precision measurement in a high dynamic environment, a kind of gyro aided multi-accelerometer inertial measurement unit (GAMA-IMU) with six accelerometers and two gyros (6A2G) was proposed in this paper. The available configurations have the problem of low measurement precision In a high dynamic environment due to channel coupling. The three channels were decoupled when calculating the angular velocity in the proposed configuration. The yawing and pitching angular velocity were directly measured by gyros, while only the rolling angular velocity was obtained by the GAMA-IMU indirectly from the rolling angular acceleration and quadratic component of rolling angular velocity. Then a single channel rolling angular velocity calculation model was established and the extended Kalman filter (EKF) was used to do state esti- mation. Simulations were carried out and results indicated that the calculation precision of the proposed 6A2G configuration could meet the demand of high precision measurement for a high-speed rotating carrier.展开更多
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac...Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.展开更多
In order to monitor the working state of piston motor and measure its instantaneous rotation speed accurately, the measuring principle and method of instantaneous rotation speed based on industrial personal computer a...In order to monitor the working state of piston motor and measure its instantaneous rotation speed accurately, the measuring principle and method of instantaneous rotation speed based on industrial personal computer and data acquisition card are introduced, and the major error source, influence mechanism and processing method of data quantization error are dis- cussed. By means of hybrid programming approach of LabVIEW and MATLAB, the instantaneous rotation speed measurement system for the piston motor in variable speed hydraulic system is designed. The simulation and experimental results show that the designed instantaneous speed measurement system is feasible. Furthermore, the sampling frequency has an important influ- ence on the instantaneous rotation speed measurement of piston motor and higher sampling frequency can lower quantization er- ror and improve measurement accuracy.展开更多
In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling a...In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling algorithm is proposed. First, the time marks of every rising edge of the rotating speed pulse and the corresponding amplitudes of faulty bearing vibration signal are determined. Then, every adjacent the rotating pulse is divided equally, and the time marks in every adjacent rotating speed pulses and the corresponding amplitudes of vibration signal are obtained by the interpolation algorithm. Finally, all the time marks and the corresponding amplitudes of vibration signal are arranged and the time marks are transformed into the angle domain to obtain the resampling signal. Speed-up and speed-down faulty bearing signals are employed to verify the validity of the proposed method, and experimental results show that the proposed method is effective for diagnosing faulty bearings. Furthermore, the traditional order tracking techniques are applied to the experimental bearing signals, and the results show that the proposed method produces higher accurate outcomes in less computation time.展开更多
Background: To understand an effective golf swing, both swing speed and impact precision must be thoroughly and simultaneously examined. The aim of this study was to perform both swing speed test and impact precision...Background: To understand an effective golf swing, both swing speed and impact precision must be thoroughly and simultaneously examined. The aim of this study was to perform both swing speed test and impact precision test to ascertain what swing type determines an effective impact. Methods: Seven golfers from a college team (handicap: 0--12) were recruited to complete a swing speed test and impact precision test using a 5-iron club, A force plate and electromyography (EMG) system were used to collect data in the swing speed test to compare the difference between two motion sequences. High speed video cameras were used to determine the displacement of rotation center for impact precision test. Results: The results showed a significant difference (p 〈 0.01) in clubhead speed with different motion sequences and muscle contraction patterns. In the impact precision test, the displacement of the rotation center which defined as the inner center point of the C7 was significantly different (p 〈 0.05) between different ball impacted marks on club face. Conclusion: The vertical peak ground reaction force on left foot occurring before impact and the left latissimus dorsi contracting prior to the right pectoralis major represent a superior skill by allowing the club to strike the ball with normal collision at a faster speed.展开更多
Commercial A7020-T6 plates in the overaged state were subjected to friction stir welding with four different tool rotational speeds of 500, 710, 1000, and 1400 r/min and a single traverse feed rate of 40 mm/min. The r...Commercial A7020-T6 plates in the overaged state were subjected to friction stir welding with four different tool rotational speeds of 500, 710, 1000, and 1400 r/min and a single traverse feed rate of 40 mm/min. The resultant changes in the welding heat input, microstructure, and the mechanical properties of the joints were investigated. The changes were related to the processes of growth, dissolution, and re-formation of precipitates. The precipitate evolution was examined by differential scanning calorimetry, and the microstructural analysis was conducted using optical, scanning, and transmission electron microscopes. The results showed that the grain size in the stirred zone(SZ) decreased substantially compared with the base metal, but increased with tool rotational speed because of the rise in temperature. We found that the width of the heat-affected zone increased with tool rotational speed. The hardness and the tensile strength in the SZ increased with increasing heat input compared with the base metal in the overaged condition. This recovery in mechanical properties of the joints can be attributed to the dissolution and re-formation of precipitates in the SZ and the thermomechanically affected zone. This process is referred to as an "auto-aging treatment."展开更多
The particle mixing was studied in a cylindrical stirred tank with elliptical dished bottom by experiments and simulations.The impeller types used were double helical ribbon(HR) + bottom HR,pitched blade ribbon + bott...The particle mixing was studied in a cylindrical stirred tank with elliptical dished bottom by experiments and simulations.The impeller types used were double helical ribbon(HR) + bottom HR,pitched blade ribbon + bottom HR,inner and outer HR + bottom HR,and pitched blade ribbon + Pfaudler + bottom HR labeled as impellers Ⅰ to Ⅳ,respectively.The quantitative correlations among the rotational speed,fill level and power consumption for impeller Ⅰ and impeller Ⅱ were obtained by experiments to validate the discrete element method(DEM) simulations.The particle mixing at different operating conditions was simulated via DEM simulations to calculate the mixing index using the Lacey method,which is a statistical method to provide a mathematical understanding of the mixing state in a binary mixture.The simulation results reveal that as the rotational speed increases,the final mixing index increases,and as the fill level increases,the final mixing index decreases.At the same operating conditions,impeller Ⅲ is the optimal combination,which provides the highest mixing index at the same revolutions.展开更多
文摘The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditions developed from the first-order shear deformation theory (FSDT). The equations of motion are obtained applying Hamilton's concept, which contain the influence of the centrifugal force, the Coriolis acceleration, and the preliminary hoop stress. In addition, the axial load is applied to the conical shell as a ratio of the global critical buckling load. The governing partial differential equations are given in the expressions of five components of displacement related to the points ly- ing on the reference surface of the shell. Afterward, the governing differential equations are converted into a group of algebraic equations by using the GDQM. The outcomes are achieved considering the effects of stacking sequences, thickness of the shell, rotating velocities, half-vertex cone angle, and boundary conditions. Furthermore, the outcomes indicate that the rate of the convergence of frequencies is swift, and the numerical tech- nique is superior stable. Three comparisons between the selected outcomes and those of other research are accomplished, and excellent agreement is achieved.
基金Projects(51861034,51601167)supported by the National Natural Science Foundation of ChinaProject(2020GY-262)supported by the Science and Technology Department of Shaanxi Province,China+1 种基金Project(2019-86-1)supported by the Technology Bureau of Yulin,ChinaProject(20GK06)supported by the High-level Talent Program of Yulin University,China。
文摘The influence of multipass high rotating speed friction stir processing(FSP)on the microstructure evolution,corrosion behavior,and tensile properties of the stirred zone(SZ)was investigated by EBSD,TEM,SEM,electrochemical workstation and electronic universal testing machine.The mean grain size of the SZ is significantly refined,and it increases with the increase of the processing pass.In addition to an obvious increase in the number,the distribution ofβ-Al12Mg17 precipitates also becomes more uniform and dispersed with increasing the processing pass.Compared with the as-received AZ31 alloy,the tensile properties of the SZ are hardly improved,but the corrosion resistances are significantly enhanced.The corrosion potential of the SZ prepared by 4-pass FSP is increased from−1.56 V for the unprocessed AZ31 alloy to−1.19 V,while the corrosion current is decreased from 1.55×10^−4 to 5.47×10^−5 A.
基金the National Natural Science Foundation of China(Grant No.51964022).
文摘In order to control the accumulation of SiC ceramic particles on the wall of the rotating chamber in the frame of a dry granulation process,the effect of the wall reverse speed on the mixing process is investigated.In particular,an Euler-Euler two-phase flow model is used to analyze the dynamics of both SiC particles and air.The numerical results show that by setting a certain reverse rotating speed of the rotating chamber,the accumulation of SiC particles on the wall can be improved,i.e.,their direction of motion in proximity to the wall can be changed and particles can be forced to re-join the granulation process.Experimental tests conducted to verify the reliability of the numerical findings,demonstrate that when the reverse rotating speed of the rotating chamber is 4 r/min,the sphericity of SiC particles in the rotating chamber is the highest and the fluidity is the best possible one.
文摘Rotating flows represent a very interesting area for researchers and industry for their extensive use in industrial and domestic machinery and especially for their great energy potential, annular flows are an example that draws the attention of researchers in recent years. The best design and optimization of these devices require knowledge of thermal, mechanical and hydrodynamic characteristics of flows circulating in these devices. An example of hydrodynamic parameters is the speed of rotation of the moving walls. This work is to study numerically the influence of the rotating speed ratio Γ of the two moving cylinders on the mean and especially on the turbulent quantities of the turbulent flow in the annular space. The numerical simulation is based on one-point statistical modeling using a low Reynolds number second-order full stress transport closure (RSM model), simulation code is not a black box but a completely transparent code where we can intervene at any step of the calculation. We have varied Γ from -1.0 to 1.0 while maintaining always the external cylinder with same speed Ω. The results show that the turbulence structure, profiles of mean velocities and the nature of the boundary layers of the mobile walls depend enormously on the ratio of speeds. The level of turbulence measured by the kinetic energy of turbulence and the Reynolds stresses shows well that the ratio Γ is an interesting parameter to exploit turbulence in this kind of annular flows.
文摘The influence of rotating speed on metal transfer and the wire metal speed was studied in the high rotating speed arc narrow gap welding.The results indicate that the high rotating speed arc has benefit on the metal transfer,and that with the rotating speed increasing,the droplet volume decreases.It is shown that the rotating speed has little influence on the wire metal speed with DC electrode positive polarity(DCEP),but the melting speed decreases with increasing of rotating speed in DC electrode negative polarity(DCEN).
基金Zhejiang Provincial Natural Science Foundation of China(No.LY14E090011)Quzhou Science and Technology Development Fund,China(No.20121057)Zhejiang Provincial Science and Technology Project,China(No.2015C31129)
文摘The rotating speed fluctuation for turbomachinery is a common problem, which will cause severe destruction for equipments and basis when the fluctuation is very strong. In this paper,in order to study the transient response characteristics of a radial vane pump subjected to slight( 5%) and strong( 20%)fluctuating rotational speeds, the variation characteristics of the external hydraulic performances are numerically predicted by means of computational fluid dynamics( CFD) technology. The results manifest that the responses of head and flow rate are different relative to the fluctuating characteristics of rotational speed. The response of the former is very satisfied in synchronism,while that of the latter is hysteretic. Meanwhile,it is found that the variation tendencies of the static pressures at the inlet and outlet of the pump are completely opposite, while the response characteristics of the dynamic pressures at the inlet and outlet are nearly identical.Subsequently,in order to further reveal the transient behavior during the instantaneous operating periods,two non-dimensional parameters are employed to deeply analyze it. The result shows that the variation tendencies of these two parameters are also approximately opposite.Moreover,the quasi-steady assumption is not able to be used to accurately assess the transient flow during transient operating periods. The comparison results show that the transient behavior does not show obvious distinctions between slight and strong fluctuating rotating speeds.
文摘Stationary shoulder friction stir lap welding (SSFSLW) was successfully used to weld 6005A-T6 aluminum alloy in this paper. Effect of pin rotating speed on cross section morphologies and lap shear strength of the SSFSLW joints were mainly discussed. Results show that joints without flash and shoulder marks can be obtained by the stationary shoulder. Cross section of the SSFSLW joint presents a basin-like morphology and little material loss. By increasing the rotating speed from 1 000 rpm to 1 600 rpm, both effective sheet thickness and lap width increase, while lap shear failure load firstly decreases and then increases. The maximum failure load of 14. 05 kN /s attained when 1 000 rpm is used. All SSFSLW joints present shear fracture mode.
基金financially supported by Science and Technology Major Project of Changsha,China(No.kh2401034)the Fundamental Research Funds for the Central Universities of Central South University(No.CX20230182)the National Key Research and Development Project of China(No.2019YFA0709002)。
文摘Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and mechanical performance of the Al-Mg-Si alloy plate repaired by the preheating-assisted AFSD process were investigated.To evaluate the tool rotation speed and substrate preheating for repair quality,the AFSD technique was used to additively repair 5 mm depth blind holes on 6061 aluminum alloy substrates.The results showed that preheat-assisted AFSD repair significantly improved joint bonding and joint strength compared to the control non-preheat substrate condition.Moreover,increasing rotation speed was also beneficial to improve the metallurgical bonding of the interface and avoid volume defects.Under preheating conditions,the UTS and elongation were positively correlated with rotation speed.Under the process parameters of preheated substrate and tool rotation speed of 1000 r/min,defect-free specimens could be obtained accompanied by tensile fracture occurring in the substrate rather than the repaired zone.The UTS and elongation reached the maximum values of 164.2MPa and 13.4%,which are equivalent to 99.4%and 140%of the heated substrate,respectively.
基金supported by National Natural Science Foundation of China(21725601)。
文摘Microdroplets and their dispersion,with a large specific surface area and a short diffusion distance,have been applied in various unit operations and reaction processes.However,it is still a challenge to control the size and size distribution of microdroplets,especially for high-throughput generation.In this work,a novel ultra-high speed rotating packed bed(UHS-RPB)was invented,in which rotating foam packing with a speed of 4000-12000 r·min^(-1) provides microfluidic channels to disperse liquid into microdroplets with high throughput.Then generated microdroplets can be directly dispersed into a continuous falling film for obtaining a mixture of microdroplet dispersion.In this UHS-RPB,the effects of rotational speed,liquid initial velocity,liquid viscosity,liquid surface tension and packing pore size on the average size(d_(32))and size distribution of microdroplets were systematically investigated.Results showed that the UHS-RPB could produce microdroplets with a d_(32) of 25-63μm at a liquid flow rate of 1025 L·h^(-1),and the size distribution of the microdroplets accords well with Rosin-Rammler distribution model.In addi-tion,a correlation was established for the prediction of d_(32),and the predicted d_(32) was in good agreement with the experimental data with a deviation within±15%.These results demonstrated that UHS-RPB could be a promising candidate for controllable preparation of uniform microdroplets.
文摘In order to satisfy the requirement of high precision measurement in a high dynamic environment, a kind of gyro aided multi-accelerometer inertial measurement unit (GAMA-IMU) with six accelerometers and two gyros (6A2G) was proposed in this paper. The available configurations have the problem of low measurement precision In a high dynamic environment due to channel coupling. The three channels were decoupled when calculating the angular velocity in the proposed configuration. The yawing and pitching angular velocity were directly measured by gyros, while only the rolling angular velocity was obtained by the GAMA-IMU indirectly from the rolling angular acceleration and quadratic component of rolling angular velocity. Then a single channel rolling angular velocity calculation model was established and the extended Kalman filter (EKF) was used to do state esti- mation. Simulations were carried out and results indicated that the calculation precision of the proposed 6A2G configuration could meet the demand of high precision measurement for a high-speed rotating carrier.
基金Shanxi Scholarship Council of China(2022-141)Fundamental Research Program of Shanxi Province(202203021211096).
文摘Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.
基金National Natural Science Foundation of China(No.51275375,No.51509006)Shaanxi Provincial Natural Science Basic Research Plan(No.2014JQ7246)+1 种基金The Science and Technology of Hubei Province(No.B2015115)Doctoral Research Foundation of Hubei University of Automotive Technology(No.BK201403)
文摘In order to monitor the working state of piston motor and measure its instantaneous rotation speed accurately, the measuring principle and method of instantaneous rotation speed based on industrial personal computer and data acquisition card are introduced, and the major error source, influence mechanism and processing method of data quantization error are dis- cussed. By means of hybrid programming approach of LabVIEW and MATLAB, the instantaneous rotation speed measurement system for the piston motor in variable speed hydraulic system is designed. The simulation and experimental results show that the designed instantaneous speed measurement system is feasible. Furthermore, the sampling frequency has an important influ- ence on the instantaneous rotation speed measurement of piston motor and higher sampling frequency can lower quantization er- ror and improve measurement accuracy.
基金Fundamental Research Funds for the Central Universities(No.2016JBM051)
文摘In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling algorithm is proposed. First, the time marks of every rising edge of the rotating speed pulse and the corresponding amplitudes of faulty bearing vibration signal are determined. Then, every adjacent the rotating pulse is divided equally, and the time marks in every adjacent rotating speed pulses and the corresponding amplitudes of vibration signal are obtained by the interpolation algorithm. Finally, all the time marks and the corresponding amplitudes of vibration signal are arranged and the time marks are transformed into the angle domain to obtain the resampling signal. Speed-up and speed-down faulty bearing signals are employed to verify the validity of the proposed method, and experimental results show that the proposed method is effective for diagnosing faulty bearings. Furthermore, the traditional order tracking techniques are applied to the experimental bearing signals, and the results show that the proposed method produces higher accurate outcomes in less computation time.
文摘Background: To understand an effective golf swing, both swing speed and impact precision must be thoroughly and simultaneously examined. The aim of this study was to perform both swing speed test and impact precision test to ascertain what swing type determines an effective impact. Methods: Seven golfers from a college team (handicap: 0--12) were recruited to complete a swing speed test and impact precision test using a 5-iron club, A force plate and electromyography (EMG) system were used to collect data in the swing speed test to compare the difference between two motion sequences. High speed video cameras were used to determine the displacement of rotation center for impact precision test. Results: The results showed a significant difference (p 〈 0.01) in clubhead speed with different motion sequences and muscle contraction patterns. In the impact precision test, the displacement of the rotation center which defined as the inner center point of the C7 was significantly different (p 〈 0.05) between different ball impacted marks on club face. Conclusion: The vertical peak ground reaction force on left foot occurring before impact and the left latissimus dorsi contracting prior to the right pectoralis major represent a superior skill by allowing the club to strike the ball with normal collision at a faster speed.
基金financial support provided by Shahid Chamran University of Ahvaz, Iran
文摘Commercial A7020-T6 plates in the overaged state were subjected to friction stir welding with four different tool rotational speeds of 500, 710, 1000, and 1400 r/min and a single traverse feed rate of 40 mm/min. The resultant changes in the welding heat input, microstructure, and the mechanical properties of the joints were investigated. The changes were related to the processes of growth, dissolution, and re-formation of precipitates. The precipitate evolution was examined by differential scanning calorimetry, and the microstructural analysis was conducted using optical, scanning, and transmission electron microscopes. The results showed that the grain size in the stirred zone(SZ) decreased substantially compared with the base metal, but increased with tool rotational speed because of the rise in temperature. We found that the width of the heat-affected zone increased with tool rotational speed. The hardness and the tensile strength in the SZ increased with increasing heat input compared with the base metal in the overaged condition. This recovery in mechanical properties of the joints can be attributed to the dissolution and re-formation of precipitates in the SZ and the thermomechanically affected zone. This process is referred to as an "auto-aging treatment."
文摘The particle mixing was studied in a cylindrical stirred tank with elliptical dished bottom by experiments and simulations.The impeller types used were double helical ribbon(HR) + bottom HR,pitched blade ribbon + bottom HR,inner and outer HR + bottom HR,and pitched blade ribbon + Pfaudler + bottom HR labeled as impellers Ⅰ to Ⅳ,respectively.The quantitative correlations among the rotational speed,fill level and power consumption for impeller Ⅰ and impeller Ⅱ were obtained by experiments to validate the discrete element method(DEM) simulations.The particle mixing at different operating conditions was simulated via DEM simulations to calculate the mixing index using the Lacey method,which is a statistical method to provide a mathematical understanding of the mixing state in a binary mixture.The simulation results reveal that as the rotational speed increases,the final mixing index increases,and as the fill level increases,the final mixing index decreases.At the same operating conditions,impeller Ⅲ is the optimal combination,which provides the highest mixing index at the same revolutions.