The response of pile foundation in liquefable sand reinforced by densification techniques remains a very complex problem during strong earthquakes. A shake-table experiment was carried out to investigate the behavior ...The response of pile foundation in liquefable sand reinforced by densification techniques remains a very complex problem during strong earthquakes. A shake-table experiment was carried out to investigate the behavior of a reinforced concrete low-cap pile group embedded in this type of ground. In this study, a three-dimensional (3D) finite element (FE) analysis of the experiment was conducted. The computed response of the soil-pile system was in reasonable agreement with the experimental results, highlighting some key characteristics. Then, a parametric study was performed to explore the influence of pile spacing, pile stiffness (E/), superstructure mass, sand permeability, and shaking characteristics of input motion on the behavior of the pile. The investigation demonstrated a stiffening behavior appearing in the liquefied medium- dense sand, and the pile group effect seemed negligible. Furthermore, the kinematic effect was closely connected with both EI and sand permeability. Nevertheless, the inertial effect was strongly influenced by the superstructure mass. Meanwhile, high frequency and large amplitude of the input motion could produced greater the pile's moments. It is estimated that this case study could further enhance the current understanding of the behavior of low-cap pile foundations in liquefied dense sand.展开更多
Structural health monitoring of RC structures under seismic loads has recently attracted much attention in the earthquake engineering research community. In this study, a piezoceramic-based device called "smart aggre...Structural health monitoring of RC structures under seismic loads has recently attracted much attention in the earthquake engineering research community. In this study, a piezoceramic-based device called "smart aggregate" was used for the health monitoring of RC frame structures under earthquake excitations. Three RC moment frames instrumented with smart aggregates were tested using a shaketable with different ground excitation intensities. Distributed piezoceramic- based smart aggregates were embedded in the RC structures and used to monitor their health condition during the tests. The sensitivity and effectiveness of the proposed piezoceramic-based approach were investigated and evaluated by analyzing the measured responses. The displacement ductility demand of the structural members was calculated and compared with the damage index determined from the health monitoring system. The comparison shows that the damage index is compatible with the calculated ductility demand.展开更多
基金National Natural Science Foundation of China under Grant Nos.51108134 and 51378161
文摘The response of pile foundation in liquefable sand reinforced by densification techniques remains a very complex problem during strong earthquakes. A shake-table experiment was carried out to investigate the behavior of a reinforced concrete low-cap pile group embedded in this type of ground. In this study, a three-dimensional (3D) finite element (FE) analysis of the experiment was conducted. The computed response of the soil-pile system was in reasonable agreement with the experimental results, highlighting some key characteristics. Then, a parametric study was performed to explore the influence of pile spacing, pile stiffness (E/), superstructure mass, sand permeability, and shaking characteristics of input motion on the behavior of the pile. The investigation demonstrated a stiffening behavior appearing in the liquefied medium- dense sand, and the pile group effect seemed negligible. Furthermore, the kinematic effect was closely connected with both EI and sand permeability. Nevertheless, the inertial effect was strongly influenced by the superstructure mass. Meanwhile, high frequency and large amplitude of the input motion could produced greater the pile's moments. It is estimated that this case study could further enhance the current understanding of the behavior of low-cap pile foundations in liquefied dense sand.
基金NSC under Grant No.98-2221-E-027-057-MY2the Center for Research on Earthquake Engineering(NCREE)
文摘Structural health monitoring of RC structures under seismic loads has recently attracted much attention in the earthquake engineering research community. In this study, a piezoceramic-based device called "smart aggregate" was used for the health monitoring of RC frame structures under earthquake excitations. Three RC moment frames instrumented with smart aggregates were tested using a shaketable with different ground excitation intensities. Distributed piezoceramic- based smart aggregates were embedded in the RC structures and used to monitor their health condition during the tests. The sensitivity and effectiveness of the proposed piezoceramic-based approach were investigated and evaluated by analyzing the measured responses. The displacement ductility demand of the structural members was calculated and compared with the damage index determined from the health monitoring system. The comparison shows that the damage index is compatible with the calculated ductility demand.