The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The ma...The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The macro phenomena of the two different foundation models are described and analyzed.The effects of the replacement of EPS composite soil on seismic-induced liquefaction of backfill and the dynamic performance of a caisson structure are evaluated in detail.The results show that the excess pore water pressure generation in the CES is significantly slower than that in the CSS during the shaking.The dynamic earth pressure acting on the caisson has a triangular shape.The response of horizontal acceleration,displacement,settlement,and rotation angle of the caisson in the CES is smaller than that in the CSS,which means the caisson in the CES has a better seismic performance.Furthermore,the out-of-phase phenomenon between dynamic earth thrust and inertial force in the CES is more obvious than that in the CSS,which is beneficial to reduce the lateral force and improve the stability of the caisson structure.展开更多
A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culve...A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culverts due to strong earth-quakes like the 1995 Hyogoken-nanbu earthquake. The dynamic strains of the embedded culvert models and the seismic soil pressure acting on the models due to sinusoidal and random strong motions were investigated. This study verified that the cor-rugated culvert model was subjected to dynamic horizontal forces (lateral seismic soil pressure) from the surrounding ground, which caused the large bending strains on the structure; and that the structures do not exceed the allowable plastic deformation and do not collapse completely during strong earthquake like Hyogoken-nanbu earthquake. The results obtained are useful for design and construction of embedded long span corrugated steel culverts in seismic regions.展开更多
This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test result...This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test results of damage characteristics and seismic responses are provided and compared. Then, nonlinear response analyses are conducted to examine the reliability of the dynamic analysis. Finally, many nonlinear response analyses are performed and it is concluded that for relatively hard sites under a certain lateral stiffness ratio (i.e., the ratio of the stiffness of the lowest upper masonry story to that of the frame- shear wall story), the masonry structure with one-story frame-shear wall at the bottom performs better than a structure built entirely of masonry, and a masonry structure with frame-shear wall of two stories performs better than with one-story frame- shear wall. In relatively soft soil conditions, all three structures have similar performane. In addition, some suggestions that could be helpful for design of masonry structures with ground story of frame-shear wall structure in seismic intensity region VII, such as the appropriate lateral stiffness ratio, shear force increase factor of the frame-shear wall story, and permissible maximum height of the building, are proposed.展开更多
As the offshore wind turbine foundation,the four-bucket jacket foundation has a large stiffness and the structure is difficult to be damaged under seismic load.Nevertheless,the saturated subsoil of the four-bucket jac...As the offshore wind turbine foundation,the four-bucket jacket foundation has a large stiffness and the structure is difficult to be damaged under seismic load.Nevertheless,the saturated subsoil of the four-bucket jacket foundation tends to be liquefied under earthquake,which greatly affects the safety of offshore wind turbine.Therefore,the seismic performance of four-bucket jacket foundation is mainly reflected in the anti-liquefaction capacity of foundation soil.In this paper,the liquefaction resistance of sandy soil of four-bucket jacket foundation for offshore wind turbine is studied.The liquefaction and dynamic response of sandy soil foundation of four-bucket jacket foundation under seismic load are obtained by carrying out the shaking table test,and the influence mechanism of four-bucket jacket foundation on the liquefaction resistance of sandy soil foundation is analyzed.展开更多
The seismic response characteristics of three-bucket jacket foundations for offshore wind turbines(OWTs)and the liquefaction of the surrounding soil are particularly important for the development and application of th...The seismic response characteristics of three-bucket jacket foundations for offshore wind turbines(OWTs)and the liquefaction of the surrounding soil are particularly important for the development and application of this type of structure for offshore use.Using the shaking table test and three-dimensional finite element analysis,different magnitudes of simulated earthquake waves were used as inputs to the shaking table to model seismic excitations.The resulting changes in the excess pore water pressure and acceleration response of the soil under horizontal earthquake are compared in this paper.Calculations of the anti-liquefaction shear stress and equivalent shearing stress during the earthquake,determination of the areas prone to liquefaction,and identification of the effect of the three-bucket jacket foundation on the soil liquefaction resistance were conducted by developing a soil-structure finite element model.The development law of the soil’s amplification effect on seismic acceleration and the seismic response of the foundation soil under various magnitude earthquake waves were also discussed.Results indicate that liquefying the soil inside the bucket of the foundation is more difficult than that outside the bucket during the excitation of seismic waves due to the large upper load and the restraint of the surrounding hoop.This finding confirms the advantages of the three-bucket jacket foundations in improving the liquefaction resistance of the soil inside the bucket.However,the confinement has a barely noticeable impact on the nearby soil outside the skirt.The phenomenon of soil liquefaction at the bottom of the skirt occurred earlier than that in other positions during the seismic excitation,and the excess pore water pressure slowly dissipated.The acceleration amplification coefficient of the sand outside the bucket increases with depth,but that of the sand inside the bucket is substantially inhibited in the height range of the bucket foundation.This result proves the inhibition effects of the three-bucket jacket foundations on the seismic responses of soils.The liquefied soil layer has a significant effect in absorbing a certain amount of seismic wave energy and reducing the amplification effect.The numerical simulation results are consistent with the phenomenon and data measured during the shaking table test.The current study also verifies the feasibility of the excess pore water pressure ratio and the anti-liquefaction shear stress method for judging soil liquefaction.展开更多
Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abu...Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abundant enough to cover a large variety of types and conditions of the soil.In the study,1-g shaking table tests of a 3-m-height sand column were conducted to provide seismic experimental data about sand.The sand was directly collected in-situ,with the largest grain diameter being 2 cm and containing a water content of 6.3%.Properties of the sand were estimated under the influence of white noise plus pulse and earthquake motions,including the settlement,the dynamic properties of the sand column,and the three soil layers′shear modulus degradation relationships.The estimated properties were then indirectly verified by means of finite element analysis.Results show that the estimated parameters were effective and could be used in numerical modeling to reproduce approximate seismic responses of the sand column.展开更多
Physical model test is an effective way to unveil the dynamic response of a slope under seismic condition.The similarity design is the key of physical model test.An isolated similarity design method for shaking table ...Physical model test is an effective way to unveil the dynamic response of a slope under seismic condition.The similarity design is the key of physical model test.An isolated similarity design method for shaking table tests was proposed and verified in this work.In this method,the relevant physical quantities were divided into several subsystems and subcharacteristic equations for each subsystem were then established based on the Buckingham similarity theory.Large-scale shaking table tests on a reinforced slope were adopted herein to illustrate the application of the proposed isolated similarity design method.The similarity system for the studied slope was divided into four parts in the process of similarity design.The geometrical dimension L,densityρand gravity g were selected as fundamental quantities for the similarity design,and four subcharacteristic equations were established for each subsystem.The dynamic responses of the recorded acceleration and axis force show that the seismic waves propagate well in the model slope.The proposed isolated similarity design method solves the conflict between the similarity requirement for all relevant physical quantities and the difficulty of test model fabrication to satisfy all similarity relations.展开更多
The retaining walls in coral sand sites are inevitably threatened by earthquakes. A series of shaking table tests were carried out to study the seismic stability of gravity retaining walls with coral sand backfill. Pa...The retaining walls in coral sand sites are inevitably threatened by earthquakes. A series of shaking table tests were carried out to study the seismic stability of gravity retaining walls with coral sand backfill. Parallel tests with quartz sand were performed to compare and discuss the special dynamic properties of coral sand sites. The results show that the acceleration difference between the retaining wall and the coral sand backfill is 76%-92% that of the quartz sand,which corresponds to the larger liquefaction resistance of coral sand compared with the quartz sand. However, the horizontal displacement of the retaining walls with coral sand backfill reaches 79% of its own width under 0.4g vibration intensity. The risk of instability and damage of the retaining walls with coral sand backfill under strong earthquakes needs attention.展开更多
It is considered thai the damage of the underground structures caused by earthquakes is minor for a long time. However, the catastrophic damages induced by several recent earthquakes (e. g. Kobe earthquake in 1995 )...It is considered thai the damage of the underground structures caused by earthquakes is minor for a long time. However, the catastrophic damages induced by several recent earthquakes (e. g. Kobe earthquake in 1995 ) revealed that the study on the dynamic properties of the underground structures is indispensable. The dynamic behavior and damage mechanism of underground structure are analyzed by using shaking table tests ( both shallow-and deep-buried) and numerical simulation (3D FEM) including horizontal and vertical input motions, individually and simultaneously. From the results, the underground structure collapsed due to strong horizontal forces although vertical deformation is not negligible. The vertical excitation increases the response of structure, especially the stress and shear stress at the upper section; the soil influenced the property of soilstructure system. In the same excitation, the response in shallow-buried test is larger than deep case. Both overburden and vertical earthquake play important roles in the response of structure and those are two critical aspects in the design of the large-span underground structures, such as subway stations.展开更多
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal...As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.展开更多
When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response...When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response of underground structures in liquefiable interlayer sites,and a valid numerical model was obtained through simulation model test.Finally,the calibrated numerical model was used to perform further research on the influence of various distribution characteristics of liquefiable interlayers on the seismic reaction of underground structures.The key findings are as follows.The structure faces the most unfavorable condition once a liquefiable layer is located in the middle of the underground structure.When a liquefiable layer exists in the middle of the structure,the seismic reactions of both the underground structure and model site will increase with the rise of the thickness of the liquefiable interlayer.The inter-story drift of the structure in the non-liquefiable site is much smaller than that in the liquefiable interlayer site.The inter-story drift of the structure is not only associated with the site displacement and the soil-structure stiffness ratio but also closely associated with the slippage of the soil-structure contact interface under the condition of large deformation of the site.展开更多
Underground structures are susceptible to float and move upward during earthquakes when located in a liquefiable soil deposit.There are examples of this phenomenon in past major earthquake events.In this study,the upl...Underground structures are susceptible to float and move upward during earthquakes when located in a liquefiable soil deposit.There are examples of this phenomenon in past major earthquake events.In this study,the uplift of circular tunnels in a liquefiable sand layer was investigated with a series of shaking table tests.The research has focused on the buried depth of the tunnel,tunnel diameter,tunnel weight,liquefaction extent,uplift mechanism,and factor of safety against liquefaction-induced uplift.According to the test results,the shallow buried depth,larger diameter,and lower weight can intensify the tunnel uplift,so the displacement in post-liquefaction time continues at the same rate as during the shaking time.Due to the shear-induced dilation,pore water pressure generation around the tunnel was reduced compared with that of the free field.The excess pore water pressure dissipation in the soil overlying the uplifted tun-nel was significant,which leads to suction in the soil deposit.Furthermore,the acceleration response of overlying soil with the uplifted tunnel was similar to that of the free field.However,the soil acceleration response around the tunnel without uplift was similar to the base motion.展开更多
To explore the cumulative deformation effect of the dynamic response of a tunnel crossing the hauling sliding surface under earthquakes,the shaking table test was conducted in this study.Combined with the numerical ca...To explore the cumulative deformation effect of the dynamic response of a tunnel crossing the hauling sliding surface under earthquakes,the shaking table test was conducted in this study.Combined with the numerical calculations,this study proposed magnification of the Arias intensity(MIa)to characterize the overall local deformation damage of the tunnel lining in terms of the deformation characteristics,frequency domain,and energy.Using the time‐domain analysis method,the plastic effect coefficient(PEC)was proposed to characterize the degree of plastic deformation,and the applicability of the seismic cumulative failure effect(SCFE)was discussed.The results show that the low‐frequency component(f1 and f2≤10 Hz)and the high‐frequency component(f3 and f4>10 Hz)acceleration mainly cause global and local deformation of the tunnel lining.The local deformation caused by the high‐frequency wave has an important effect on the seismic damage of the lining.The physical meaning of PEC is more clearly defined than that of the residual strain,and the SCFE of the tunnel lining can also be defined.The SCFE of the tunnel lining includes the elastic deformation effect stage(<0.15g),the elastic–plastic deformation effect stage(0.15g–0.30g),and the plastic deformation effect stage(0.30g–0.40g).This study can provide valuable theoretical and technical support for the construction of traffic tunnels in high‐intensity earthquake areas.展开更多
Physical modelling of cantilever retaining walls with and without backfill reinforcement was conducted on a 1g shaking table to evaluate the mitigation effect of reinforcement on system dynamics(g denotes the accelera...Physical modelling of cantilever retaining walls with and without backfill reinforcement was conducted on a 1g shaking table to evaluate the mitigation effect of reinforcement on system dynamics(g denotes the acceleration of gravity).The model wall has a height of 1.5 m with a scale ratio of 1/4 and retains dry sand throughout.The input motions are amplified to three levels of input peak base acceleration,0.11g,0.24g,and 0.39g,corresponding to minor,moderate,and major earthquakes,respectively.Investigation of the seismic response of the retaining walls focuses on acceleration and lateral displacement of the wall and backfill,dynamic earth pressures,and tensile load in the reinforcements(modeled by phosphor-bronze strips welded into a mesh).The inclusion of reinforcement has been observed to improve the integrity of the wall-soil system,mitigate vibration-related damage,and reduce the fundamental frequency of a reinforced system.Propagation of acceleration from the base to the upper portion is accompanied by time delay and nonlinear amplification.A reinforced system with a lower acceleration amplification factor than the unreinforced one indicates that reinforcement can reduce the amplification effect of input motion.Under minor and moderate earthquake loadings,reinforcement allows the inertia force and seismic earth pressure to be asynchronous and decreases the seismic earth pressure when inertia forces peak.During major earthquake loading,the wall is displaced horizontally less than the backfill,with soil pushing the wall substantially;the effect of backfill reinforcement has not been fully mobilized.The dynamic earth pressure is large at the top and diminishes toward the bottom.展开更多
To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Tab...To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range.展开更多
Sandy gravel foundations exhibit non-linear dynamic behavior when subjected to strong ground motions,which can have amplification effects on superstructures and can reveal insufficient lateral resistance of foundation...Sandy gravel foundations exhibit non-linear dynamic behavior when subjected to strong ground motions,which can have amplification effects on superstructures and can reveal insufficient lateral resistance of foundations.Grouting methods can be used to improve the seismic performance of natural sandy gravel foundations.The strength and stiffness of grouted sandy gravel foundations are different from those of natural foundations,which have unknown earthquake resistance.Few studies have investigated the seismic behavior of sandy gravel foundations before and after grouting.In this study,two shaking table tests were performed to evaluate the effect of grouting reinforcement on seismic performance.The natural frequency,acceleration amplification effect,lateral displacement,and vertical settlement of the non-grouted and grouted sandy gravel foundations were measured and compared.Additionally,the dynamic stress-strain relationships of the two foundations were obtained by a linear inversion method to evaluate the seismic energy dissipation.The test results indicated that the acceleration amplification,lateral displacement amplitude,and vertical settlement of the grouted sandy gravel foundation were lower than that of the non-grouted foundation under low-intensity earthquakes.However,a contrasting result was observed under high-intensity earthquakes.This demonstrated that different grouting reinforcement strategies are required for different sandy gravel foundations.In addition,the dynamic stress-strain relationship of the two foundations exhibited two different energy dissipation mechanisms.The results provide insights relating to the development of foundations for relevant engineering sites and to the dynamic behavior of grouted foundations prior to investigating soil-structure interaction problems.展开更多
Underground utility tunnels are widely used in urban areas throughout the world for lifeline networks due to their easy maintenance and environmental protection capabilities. However, knowledge about their seismic per...Underground utility tunnels are widely used in urban areas throughout the world for lifeline networks due to their easy maintenance and environmental protection capabilities. However, knowledge about their seismic performance is still quite limited and seismic design procedures are not included in current design codes. This paper describes a series of shaking table tests the authors performed on a scaled utility tunnel model to explore its performance under earthquake excitation. Details of the experimental setup are first presented focusing on aspects such as the design of the soil container, scaled structural model, sensor array arrangement and test procedure. The main observations from the test program, including structural response, soil response, soil-structure interaction and earth pressure, are summarized and discussed. Further, a finite element model (FEM) of the test utility tunnel is established where the nonlinear soil properties are modeled by the Drucker- Prager constitutive model; the master-slave surface mechanism is employed to simulate the soil-structure dynamic interaction; and the confining effect of the laminar shear box to soil is considered by proper boundary modeling. The results from the numerical model are compared with experiment measurements in terms of displacement, acceleration and amplification factor of the structural model and the soil. The comparison shows that the numerical results match the experimental measurements quite well. The validated numerical model can be adopted for further analysis.展开更多
A wind turbine system equipped with a tuned liquid column damper (TLCD) is comprehensively studied via shaking table tests using a 1/13-scaled model. The effects of wind and wave actions are considered by inputting ...A wind turbine system equipped with a tuned liquid column damper (TLCD) is comprehensively studied via shaking table tests using a 1/13-scaled model. The effects of wind and wave actions are considered by inputting response- equivalent accelerations on the shaking table. The test results show that the control effect of the TLCD system is significant in reducing the responses under both wind-wave equivalent loads and ground motions, but obviously varies for different inputs, Further, a blade-hub-tower integrated numerical model for the wind turbine system is established. The model is capable of considering the rotational effect of blades by combining Kane's equation with the finite element method. The responses of the wind tower equipped with TLCD devices are numerically obtained and compared to the test results, showing that under both controlled and uncontrolled conditions with and without blades' rotation, the corresponding responses exhibit good agreement. This demonstrates that the proposed numerical model performs well in capturing the wind-wave coupled response of the offshore wind turbine systems under control. Both numerical and experimental results show that the TLCD system can significantly reduce the structural response and thus improve the safety and serviceability of the offshore wind turbine tower systems. Additional issues that require further study are discussed.展开更多
Severe damage to suspended ceilings of metal grids and lay-in panels was observed in public buildings during the 2013 M7.0 Lushan earthquake in China. Over the past several years, suspended ceilings have been widely u...Severe damage to suspended ceilings of metal grids and lay-in panels was observed in public buildings during the 2013 M7.0 Lushan earthquake in China. Over the past several years, suspended ceilings have been widely used practice in public buildings throughout China, including government offices, schools and hospitals. To investigate the damage mechanism of suspended ceilings, a series of three-dimensional shake table tests was conducted to reproduce the observed damage. A full-scale reinforced concrete frame was constructed as the testing frame for the ceiling, which was single-story and infilled with brick masonry walls to represent the local construction of low-rise buildings. In general, the ceiling in the tests exhibited similar damage phenomena as the field observations, such as higher vulnerability of perimeter elements and extensive damage to the cross runners. However, it exhibited lower fragility in terms of peak ground/roof accelerations at the initiation of damage. Further investigations are needed to clarify the reasons for this behavior.展开更多
Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthqu...Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthquake. In this paper, a three-dimensional normal fault sliding device was designed, and a shaking table test was carried out to study tunnel seismic performance under normal fault slip. The results show that peak acceleration of lining is dominated by an existence of fault and direction of seismic excitation, not normal fault slip. And the incremental strains of lining in critical zone with 1.7 times fault thickness and centered in faults induced by normal fault slip and seismic excitation are larger than ones only by seismic excitation. And the incremental strains in critical zone increase with the increase of normal fault slip magnitude ranging from 0 to 2 mm. And normal fault slip results in a significant reduction of overall tunnel stiffness subjected to an earthquake. These experimental results provide a scientific reference for prevention and control measurement of tunnel damage under earthquake and normal fault slip.展开更多
基金National Natural Science Foundation of China under Grant Nos. 52178336 and 52108324Natural Science Research Project of Colleges and Universities in Jiangsu Province of China under Grant No. 18KJA560002+1 种基金the Middle-Aged&Young Science Leaders of Qinglan Project of Universities in Jiangsu Province of ChinaPostgraduate Research&Practice Innovation Program in Jiangsu Province of China under Grant No. KYCX24_1585
文摘The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The macro phenomena of the two different foundation models are described and analyzed.The effects of the replacement of EPS composite soil on seismic-induced liquefaction of backfill and the dynamic performance of a caisson structure are evaluated in detail.The results show that the excess pore water pressure generation in the CES is significantly slower than that in the CSS during the shaking.The dynamic earth pressure acting on the caisson has a triangular shape.The response of horizontal acceleration,displacement,settlement,and rotation angle of the caisson in the CES is smaller than that in the CSS,which means the caisson in the CES has a better seismic performance.Furthermore,the out-of-phase phenomenon between dynamic earth thrust and inertial force in the CES is more obvious than that in the CSS,which is beneficial to reduce the lateral force and improve the stability of the caisson structure.
文摘A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culverts due to strong earth-quakes like the 1995 Hyogoken-nanbu earthquake. The dynamic strains of the embedded culvert models and the seismic soil pressure acting on the models due to sinusoidal and random strong motions were investigated. This study verified that the cor-rugated culvert model was subjected to dynamic horizontal forces (lateral seismic soil pressure) from the surrounding ground, which caused the large bending strains on the structure; and that the structures do not exceed the allowable plastic deformation and do not collapse completely during strong earthquake like Hyogoken-nanbu earthquake. The results obtained are useful for design and construction of embedded long span corrugated steel culverts in seismic regions.
基金China Joint Earthquake Science Foundation Under Grant No. 95034National Science Foundation of China Under Grant No. 5067816
文摘This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test results of damage characteristics and seismic responses are provided and compared. Then, nonlinear response analyses are conducted to examine the reliability of the dynamic analysis. Finally, many nonlinear response analyses are performed and it is concluded that for relatively hard sites under a certain lateral stiffness ratio (i.e., the ratio of the stiffness of the lowest upper masonry story to that of the frame- shear wall story), the masonry structure with one-story frame-shear wall at the bottom performs better than a structure built entirely of masonry, and a masonry structure with frame-shear wall of two stories performs better than with one-story frame- shear wall. In relatively soft soil conditions, all three structures have similar performane. In addition, some suggestions that could be helpful for design of masonry structures with ground story of frame-shear wall structure in seismic intensity region VII, such as the appropriate lateral stiffness ratio, shear force increase factor of the frame-shear wall story, and permissible maximum height of the building, are proposed.
基金financially supported by the National Natural Science Foundation of China(Grant No.52171274).
文摘As the offshore wind turbine foundation,the four-bucket jacket foundation has a large stiffness and the structure is difficult to be damaged under seismic load.Nevertheless,the saturated subsoil of the four-bucket jacket foundation tends to be liquefied under earthquake,which greatly affects the safety of offshore wind turbine.Therefore,the seismic performance of four-bucket jacket foundation is mainly reflected in the anti-liquefaction capacity of foundation soil.In this paper,the liquefaction resistance of sandy soil of four-bucket jacket foundation for offshore wind turbine is studied.The liquefaction and dynamic response of sandy soil foundation of four-bucket jacket foundation under seismic load are obtained by carrying out the shaking table test,and the influence mechanism of four-bucket jacket foundation on the liquefaction resistance of sandy soil foundation is analyzed.
基金the National Natural Science Foundation of China(No.52171274)。
文摘The seismic response characteristics of three-bucket jacket foundations for offshore wind turbines(OWTs)and the liquefaction of the surrounding soil are particularly important for the development and application of this type of structure for offshore use.Using the shaking table test and three-dimensional finite element analysis,different magnitudes of simulated earthquake waves were used as inputs to the shaking table to model seismic excitations.The resulting changes in the excess pore water pressure and acceleration response of the soil under horizontal earthquake are compared in this paper.Calculations of the anti-liquefaction shear stress and equivalent shearing stress during the earthquake,determination of the areas prone to liquefaction,and identification of the effect of the three-bucket jacket foundation on the soil liquefaction resistance were conducted by developing a soil-structure finite element model.The development law of the soil’s amplification effect on seismic acceleration and the seismic response of the foundation soil under various magnitude earthquake waves were also discussed.Results indicate that liquefying the soil inside the bucket of the foundation is more difficult than that outside the bucket during the excitation of seismic waves due to the large upper load and the restraint of the surrounding hoop.This finding confirms the advantages of the three-bucket jacket foundations in improving the liquefaction resistance of the soil inside the bucket.However,the confinement has a barely noticeable impact on the nearby soil outside the skirt.The phenomenon of soil liquefaction at the bottom of the skirt occurred earlier than that in other positions during the seismic excitation,and the excess pore water pressure slowly dissipated.The acceleration amplification coefficient of the sand outside the bucket increases with depth,but that of the sand inside the bucket is substantially inhibited in the height range of the bucket foundation.This result proves the inhibition effects of the three-bucket jacket foundations on the seismic responses of soils.The liquefied soil layer has a significant effect in absorbing a certain amount of seismic wave energy and reducing the amplification effect.The numerical simulation results are consistent with the phenomenon and data measured during the shaking table test.The current study also verifies the feasibility of the excess pore water pressure ratio and the anti-liquefaction shear stress method for judging soil liquefaction.
基金Supported by:National Natural Science Foundation of China under Grant Nos.52008233 and U1839201the National Key Research and Development Program of China under Grant No.2018YFC1504305the Innovative Research Groups of the National Natural Science Foundation of China under Grant No.51421005。
文摘Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abundant enough to cover a large variety of types and conditions of the soil.In the study,1-g shaking table tests of a 3-m-height sand column were conducted to provide seismic experimental data about sand.The sand was directly collected in-situ,with the largest grain diameter being 2 cm and containing a water content of 6.3%.Properties of the sand were estimated under the influence of white noise plus pulse and earthquake motions,including the settlement,the dynamic properties of the sand column,and the three soil layers′shear modulus degradation relationships.The estimated properties were then indirectly verified by means of finite element analysis.Results show that the estimated parameters were effective and could be used in numerical modeling to reproduce approximate seismic responses of the sand column.
基金financially supported by National Natural Science Foundation of China(51708163 and 41907247)Hainan Provincial Natural Science Foundation of China(520MS018)the foundation from the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(SKLGP2021K008)。
文摘Physical model test is an effective way to unveil the dynamic response of a slope under seismic condition.The similarity design is the key of physical model test.An isolated similarity design method for shaking table tests was proposed and verified in this work.In this method,the relevant physical quantities were divided into several subsystems and subcharacteristic equations for each subsystem were then established based on the Buckingham similarity theory.Large-scale shaking table tests on a reinforced slope were adopted herein to illustrate the application of the proposed isolated similarity design method.The similarity system for the studied slope was divided into four parts in the process of similarity design.The geometrical dimension L,densityρand gravity g were selected as fundamental quantities for the similarity design,and four subcharacteristic equations were established for each subsystem.The dynamic responses of the recorded acceleration and axis force show that the seismic waves propagate well in the model slope.The proposed isolated similarity design method solves the conflict between the similarity requirement for all relevant physical quantities and the difficulty of test model fabrication to satisfy all similarity relations.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41831282 and 51878103)the Fundamental Research Funds for the Central Universities(Grant No.2021CDJQY-042)Chongqing Talents Program(Grant No.cstc2021ycjh-bgzxm0051).
文摘The retaining walls in coral sand sites are inevitably threatened by earthquakes. A series of shaking table tests were carried out to study the seismic stability of gravity retaining walls with coral sand backfill. Parallel tests with quartz sand were performed to compare and discuss the special dynamic properties of coral sand sites. The results show that the acceleration difference between the retaining wall and the coral sand backfill is 76%-92% that of the quartz sand,which corresponds to the larger liquefaction resistance of coral sand compared with the quartz sand. However, the horizontal displacement of the retaining walls with coral sand backfill reaches 79% of its own width under 0.4g vibration intensity. The risk of instability and damage of the retaining walls with coral sand backfill under strong earthquakes needs attention.
文摘It is considered thai the damage of the underground structures caused by earthquakes is minor for a long time. However, the catastrophic damages induced by several recent earthquakes (e. g. Kobe earthquake in 1995 ) revealed that the study on the dynamic properties of the underground structures is indispensable. The dynamic behavior and damage mechanism of underground structure are analyzed by using shaking table tests ( both shallow-and deep-buried) and numerical simulation (3D FEM) including horizontal and vertical input motions, individually and simultaneously. From the results, the underground structure collapsed due to strong horizontal forces although vertical deformation is not negligible. The vertical excitation increases the response of structure, especially the stress and shear stress at the upper section; the soil influenced the property of soilstructure system. In the same excitation, the response in shallow-buried test is larger than deep case. Both overburden and vertical earthquake play important roles in the response of structure and those are two critical aspects in the design of the large-span underground structures, such as subway stations.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2021EEEVL0204 and 2018A02。
文摘As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.
基金National Natural Science Foundation of China under Grant No.52078020。
文摘When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response of underground structures in liquefiable interlayer sites,and a valid numerical model was obtained through simulation model test.Finally,the calibrated numerical model was used to perform further research on the influence of various distribution characteristics of liquefiable interlayers on the seismic reaction of underground structures.The key findings are as follows.The structure faces the most unfavorable condition once a liquefiable layer is located in the middle of the underground structure.When a liquefiable layer exists in the middle of the structure,the seismic reactions of both the underground structure and model site will increase with the rise of the thickness of the liquefiable interlayer.The inter-story drift of the structure in the non-liquefiable site is much smaller than that in the liquefiable interlayer site.The inter-story drift of the structure is not only associated with the site displacement and the soil-structure stiffness ratio but also closely associated with the slippage of the soil-structure contact interface under the condition of large deformation of the site.
文摘Underground structures are susceptible to float and move upward during earthquakes when located in a liquefiable soil deposit.There are examples of this phenomenon in past major earthquake events.In this study,the uplift of circular tunnels in a liquefiable sand layer was investigated with a series of shaking table tests.The research has focused on the buried depth of the tunnel,tunnel diameter,tunnel weight,liquefaction extent,uplift mechanism,and factor of safety against liquefaction-induced uplift.According to the test results,the shallow buried depth,larger diameter,and lower weight can intensify the tunnel uplift,so the displacement in post-liquefaction time continues at the same rate as during the shaking time.Due to the shear-induced dilation,pore water pressure generation around the tunnel was reduced compared with that of the free field.The excess pore water pressure dissipation in the soil overlying the uplifted tun-nel was significant,which leads to suction in the soil deposit.Furthermore,the acceleration response of overlying soil with the uplifted tunnel was similar to that of the free field.However,the soil acceleration response around the tunnel without uplift was similar to the base motion.
基金National Key R&D Program of China,Grant/Award Number:2018YFC1504901Science and technology program of Gansu Province,Grant/Award Numbers:21JR7RA738,21JR7RA739+1 种基金Science and Technology Development Project of China Railway Research Institute Co.Ltd,Grant/Award Number:2017‐KJ008‐Z008‐XBNatural Science Foundation of Gansu Province,Grant/Award Number:145RJZA068。
文摘To explore the cumulative deformation effect of the dynamic response of a tunnel crossing the hauling sliding surface under earthquakes,the shaking table test was conducted in this study.Combined with the numerical calculations,this study proposed magnification of the Arias intensity(MIa)to characterize the overall local deformation damage of the tunnel lining in terms of the deformation characteristics,frequency domain,and energy.Using the time‐domain analysis method,the plastic effect coefficient(PEC)was proposed to characterize the degree of plastic deformation,and the applicability of the seismic cumulative failure effect(SCFE)was discussed.The results show that the low‐frequency component(f1 and f2≤10 Hz)and the high‐frequency component(f3 and f4>10 Hz)acceleration mainly cause global and local deformation of the tunnel lining.The local deformation caused by the high‐frequency wave has an important effect on the seismic damage of the lining.The physical meaning of PEC is more clearly defined than that of the residual strain,and the SCFE of the tunnel lining can also be defined.The SCFE of the tunnel lining includes the elastic deformation effect stage(<0.15g),the elastic–plastic deformation effect stage(0.15g–0.30g),and the plastic deformation effect stage(0.30g–0.40g).This study can provide valuable theoretical and technical support for the construction of traffic tunnels in high‐intensity earthquake areas.
基金the National Natural Science Foundation of China(Nos.41901073 and 52078435)the Sichuan Science and Technology Program of China(No.2021YJ0001)。
文摘Physical modelling of cantilever retaining walls with and without backfill reinforcement was conducted on a 1g shaking table to evaluate the mitigation effect of reinforcement on system dynamics(g denotes the acceleration of gravity).The model wall has a height of 1.5 m with a scale ratio of 1/4 and retains dry sand throughout.The input motions are amplified to three levels of input peak base acceleration,0.11g,0.24g,and 0.39g,corresponding to minor,moderate,and major earthquakes,respectively.Investigation of the seismic response of the retaining walls focuses on acceleration and lateral displacement of the wall and backfill,dynamic earth pressures,and tensile load in the reinforcements(modeled by phosphor-bronze strips welded into a mesh).The inclusion of reinforcement has been observed to improve the integrity of the wall-soil system,mitigate vibration-related damage,and reduce the fundamental frequency of a reinforced system.Propagation of acceleration from the base to the upper portion is accompanied by time delay and nonlinear amplification.A reinforced system with a lower acceleration amplification factor than the unreinforced one indicates that reinforcement can reduce the amplification effect of input motion.Under minor and moderate earthquake loadings,reinforcement allows the inertia force and seismic earth pressure to be asynchronous and decreases the seismic earth pressure when inertia forces peak.During major earthquake loading,the wall is displaced horizontally less than the backfill,with soil pushing the wall substantially;the effect of backfill reinforcement has not been fully mobilized.The dynamic earth pressure is large at the top and diminishes toward the bottom.
基金supported by the Natural Science Foundation of China(52122811)。
文摘To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51878186 and 51738004)the Innovation Driven Development Science and Technology Project of Guangxi Province(No.AA18118055)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety(No.2019ZDK041).
文摘Sandy gravel foundations exhibit non-linear dynamic behavior when subjected to strong ground motions,which can have amplification effects on superstructures and can reveal insufficient lateral resistance of foundations.Grouting methods can be used to improve the seismic performance of natural sandy gravel foundations.The strength and stiffness of grouted sandy gravel foundations are different from those of natural foundations,which have unknown earthquake resistance.Few studies have investigated the seismic behavior of sandy gravel foundations before and after grouting.In this study,two shaking table tests were performed to evaluate the effect of grouting reinforcement on seismic performance.The natural frequency,acceleration amplification effect,lateral displacement,and vertical settlement of the non-grouted and grouted sandy gravel foundations were measured and compared.Additionally,the dynamic stress-strain relationships of the two foundations were obtained by a linear inversion method to evaluate the seismic energy dissipation.The test results indicated that the acceleration amplification,lateral displacement amplitude,and vertical settlement of the grouted sandy gravel foundation were lower than that of the non-grouted foundation under low-intensity earthquakes.However,a contrasting result was observed under high-intensity earthquakes.This demonstrated that different grouting reinforcement strategies are required for different sandy gravel foundations.In addition,the dynamic stress-strain relationship of the two foundations exhibited two different energy dissipation mechanisms.The results provide insights relating to the development of foundations for relevant engineering sites and to the dynamic behavior of grouted foundations prior to investigating soil-structure interaction problems.
基金Key Project in the National Science & Technology Pillar Program Under Grant No. 2006BAJ03B03Research Fund for Young Teacher Supported by State Key Laboratory for Disaster Reduction in Civil Engineering Under Grant No. SLDRCE08-C-03
文摘Underground utility tunnels are widely used in urban areas throughout the world for lifeline networks due to their easy maintenance and environmental protection capabilities. However, knowledge about their seismic performance is still quite limited and seismic design procedures are not included in current design codes. This paper describes a series of shaking table tests the authors performed on a scaled utility tunnel model to explore its performance under earthquake excitation. Details of the experimental setup are first presented focusing on aspects such as the design of the soil container, scaled structural model, sensor array arrangement and test procedure. The main observations from the test program, including structural response, soil response, soil-structure interaction and earth pressure, are summarized and discussed. Further, a finite element model (FEM) of the test utility tunnel is established where the nonlinear soil properties are modeled by the Drucker- Prager constitutive model; the master-slave surface mechanism is employed to simulate the soil-structure dynamic interaction; and the confining effect of the laminar shear box to soil is considered by proper boundary modeling. The results from the numerical model are compared with experiment measurements in terms of displacement, acceleration and amplification factor of the structural model and the soil. The comparison shows that the numerical results match the experimental measurements quite well. The validated numerical model can be adopted for further analysis.
基金National Natural Science Foundation of China Under Grant No.11172210National Hi-Tech Development Plan(863 Plan)Under Grant No.2008AA05Z413+2 种基金the Fundamental Fund for Central Universitiesthe Shuguang Program of Shanghai Citythe State Key Laboratory of Disaster Reduction in Civil Engineering Under Grant Nos.SLDRCE14-A-06 and SLDRCE14-B-17
文摘A wind turbine system equipped with a tuned liquid column damper (TLCD) is comprehensively studied via shaking table tests using a 1/13-scaled model. The effects of wind and wave actions are considered by inputting response- equivalent accelerations on the shaking table. The test results show that the control effect of the TLCD system is significant in reducing the responses under both wind-wave equivalent loads and ground motions, but obviously varies for different inputs, Further, a blade-hub-tower integrated numerical model for the wind turbine system is established. The model is capable of considering the rotational effect of blades by combining Kane's equation with the finite element method. The responses of the wind tower equipped with TLCD devices are numerically obtained and compared to the test results, showing that under both controlled and uncontrolled conditions with and without blades' rotation, the corresponding responses exhibit good agreement. This demonstrates that the proposed numerical model performs well in capturing the wind-wave coupled response of the offshore wind turbine systems under control. Both numerical and experimental results show that the TLCD system can significantly reduce the structural response and thus improve the safety and serviceability of the offshore wind turbine tower systems. Additional issues that require further study are discussed.
基金Research fund for earthquake engineering of China Earthquake Administration(201508023)a project of the National Science&Technology Support Program during the Twelfth Five-year Plan Period of China(2015BAK17B03)a general program of National Natural Science Foundation of China(51578515)
文摘Severe damage to suspended ceilings of metal grids and lay-in panels was observed in public buildings during the 2013 M7.0 Lushan earthquake in China. Over the past several years, suspended ceilings have been widely used practice in public buildings throughout China, including government offices, schools and hospitals. To investigate the damage mechanism of suspended ceilings, a series of three-dimensional shake table tests was conducted to reproduce the observed damage. A full-scale reinforced concrete frame was constructed as the testing frame for the ceiling, which was single-story and infilled with brick masonry walls to represent the local construction of low-rise buildings. In general, the ceiling in the tests exhibited similar damage phenomena as the field observations, such as higher vulnerability of perimeter elements and extensive damage to the cross runners. However, it exhibited lower fragility in terms of peak ground/roof accelerations at the initiation of damage. Further investigations are needed to clarify the reasons for this behavior.
基金Project(51674287)supported by the National Natural Science Foundation of China。
文摘Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthquake. In this paper, a three-dimensional normal fault sliding device was designed, and a shaking table test was carried out to study tunnel seismic performance under normal fault slip. The results show that peak acceleration of lining is dominated by an existence of fault and direction of seismic excitation, not normal fault slip. And the incremental strains of lining in critical zone with 1.7 times fault thickness and centered in faults induced by normal fault slip and seismic excitation are larger than ones only by seismic excitation. And the incremental strains in critical zone increase with the increase of normal fault slip magnitude ranging from 0 to 2 mm. And normal fault slip results in a significant reduction of overall tunnel stiffness subjected to an earthquake. These experimental results provide a scientific reference for prevention and control measurement of tunnel damage under earthquake and normal fault slip.