Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface activ...Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface active faults and the deep-seated crustal structure are analyzed using the recordings from the high-resolution digital seismic network. The focal mechanism solutions of micro-earthquakes, whose locations are precisely determined by the seismic network, have confirmed the structural characteristics to be the rotational planar normal fault and demon-strated the surface traces of the north boundary fault of Yanqing-Fanshan sub-basin. By using the digital recordings of earthquakes with the high resolutions and analyzing the mechanism solutions, our study has revealed the rela-tionship between the geological phenomena in the shallow and deep structures in Yanqing-Huailai basin and the transition features from the brittle to ductile deformation with the crustal depth.展开更多
In this paper, the abnormal characteristics of the crustal structures in the seismic active region, Yanqing-Huailai and Zhangbei-Shangyi, are obtained by means of comprehensively interpreting and studying the data of ...In this paper, the abnormal characteristics of the crustal structures in the seismic active region, Yanqing-Huailai and Zhangbei-Shangyi, are obtained by means of comprehensively interpreting and studying the data of deep seis- mic sounding profiles passing through the northwestern part of Zhangjiakou-Bohai seismic zone. The results show that the fluctuation of crystalline basement in the study region is obvious and that there exist considerable differ- ences in depth in different geological units. The locally abrupt variation of crystalline basement depths may be regarded as a mark of existence of crystalline basement faults. These crystalline basement faults and deep crustal faults provide a pass for the magma upwelling, resulting in the strong inhomogeneity of crustal structures. These phenomena of the complex seismic reflected waves and locally discontinuous reflection zones with different en- ergy indicate that the intensive squeeze and deformation of crust took place, which have led to the complex crustal structures and offered the dynamic source for the earthquake occurrence in this region. The low velocity bodies in different depths of crust and the local interface C1 in Zhangbei-Shangyi region may result from repeated magmatic activities. The certain stress accumulation in the brittle upper crust can cause the occurrence of earthquake under the action of local tectonic activity.展开更多
The interaction zone between southern Tianshan and northern Tarim is located at the northeast side of Pamir. It is a region with high seismicity. We constructed a seismotectonic model for the west part of this zone fr...The interaction zone between southern Tianshan and northern Tarim is located at the northeast side of Pamir. It is a region with high seismicity. We constructed a seismotectonic model for the west part of this zone from geological profiles, deep crust seismic detection and earthquake focal mechanisms data. Based on the synthesized geological features, deep crust structure, and earthquake focal mechanisms, we think that the main regional tectonic feature is that the Tianshan tecto-lithostratigraphic unit overthrusts on the Tarim block. The Tianshan tectonic system includes the Maidan fault and thrust sheets in front of the fault; The Tarim tectonic system includes the underground northern Tarim margin fault, conjugate faults in basement and overthrust fault in shallow. The northern Tarim margin fault is a high angle fault deep in the Tarim crust, adjusting different trending deformation between Tianshan and Tarim. It is a major active fault that can generate large earthquakes. The other faults, such as the Tianshan overthrust system and the Tarim basement faults in this area may generate moderately strong earthquakes with different styles.展开更多
文摘Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface active faults and the deep-seated crustal structure are analyzed using the recordings from the high-resolution digital seismic network. The focal mechanism solutions of micro-earthquakes, whose locations are precisely determined by the seismic network, have confirmed the structural characteristics to be the rotational planar normal fault and demon-strated the surface traces of the north boundary fault of Yanqing-Fanshan sub-basin. By using the digital recordings of earthquakes with the high resolutions and analyzing the mechanism solutions, our study has revealed the rela-tionship between the geological phenomena in the shallow and deep structures in Yanqing-Huailai basin and the transition features from the brittle to ductile deformation with the crustal depth.
基金National Natural Science Foundation of China (40334040) and Key Project from China Earthquake Administration during the ninth Five-year Plan (9504080101).
文摘In this paper, the abnormal characteristics of the crustal structures in the seismic active region, Yanqing-Huailai and Zhangbei-Shangyi, are obtained by means of comprehensively interpreting and studying the data of deep seis- mic sounding profiles passing through the northwestern part of Zhangjiakou-Bohai seismic zone. The results show that the fluctuation of crystalline basement in the study region is obvious and that there exist considerable differ- ences in depth in different geological units. The locally abrupt variation of crystalline basement depths may be regarded as a mark of existence of crystalline basement faults. These crystalline basement faults and deep crustal faults provide a pass for the magma upwelling, resulting in the strong inhomogeneity of crustal structures. These phenomena of the complex seismic reflected waves and locally discontinuous reflection zones with different en- ergy indicate that the intensive squeeze and deformation of crust took place, which have led to the complex crustal structures and offered the dynamic source for the earthquake occurrence in this region. The low velocity bodies in different depths of crust and the local interface C1 in Zhangbei-Shangyi region may result from repeated magmatic activities. The certain stress accumulation in the brittle upper crust can cause the occurrence of earthquake under the action of local tectonic activity.
基金the State Key Basic Research and Development Program (004CB418401) , Special Public Welfare Research Program of Ministry of Science and Technology of China (2004DIA3J010) and National Science and Technology Tackle Program of China(969130705)
文摘The interaction zone between southern Tianshan and northern Tarim is located at the northeast side of Pamir. It is a region with high seismicity. We constructed a seismotectonic model for the west part of this zone from geological profiles, deep crust seismic detection and earthquake focal mechanisms data. Based on the synthesized geological features, deep crust structure, and earthquake focal mechanisms, we think that the main regional tectonic feature is that the Tianshan tecto-lithostratigraphic unit overthrusts on the Tarim block. The Tianshan tectonic system includes the Maidan fault and thrust sheets in front of the fault; The Tarim tectonic system includes the underground northern Tarim margin fault, conjugate faults in basement and overthrust fault in shallow. The northern Tarim margin fault is a high angle fault deep in the Tarim crust, adjusting different trending deformation between Tianshan and Tarim. It is a major active fault that can generate large earthquakes. The other faults, such as the Tianshan overthrust system and the Tarim basement faults in this area may generate moderately strong earthquakes with different styles.