The harsh and remote environments of polar regions,such as the Arctic and Antarctica,pose significant challenges for scientific exploration,particularly in ice sampling.Extreme conditions,including low temperatures,ic...The harsh and remote environments of polar regions,such as the Arctic and Antarctica,pose significant challenges for scientific exploration,particularly in ice sampling.Extreme conditions,including low temperatures,ice,snow,and natural obstacles,make access to these areas difficult.However,ice sampling from glaciers,ice sheets,and icebergs is critical for scientific research,necessitating the development of specialized equipment.Unmanned ice-drilling systems offer a promising solution by enabling safe and efficient ice core sample collection in remote locations.Advances in extraterrestrial ice-drilling technology have inspired the development of automated drilling systems for Earth’s polar regions,with recent efforts focusing on lightweight,electric or solar-powered rovers which can tow or mount drilling systems.This paper introduces the concept of a robotic drilling system designed at Jilin University,China,for shallow drilling operations from an unmanned polar rover,highlighting its design and operational features.展开更多
The ages of coral reef samples from several shallow drill holes in the South China Sea are determined by ESR and U-series (230Th/234U) methods. The experimental results show ideal agreement between ESR and U-series ag...The ages of coral reef samples from several shallow drill holes in the South China Sea are determined by ESR and U-series (230Th/234U) methods. The experimental results show ideal agreement between ESR and U-series ages and that the coral reefs were formed in the early Holocene. In the determination of natural total dose of coral reef by use of the additive dose method good results can be obtained by exponential fitting, no matter how the effect of dose saturation is. It was found that the ratio of the natural ESR signal intensity ( I0) to the ESR signal intensity at dose saturation ( Imax) of sample can reflect the significance of a irradiation efficiency-k value. Using the k value of sample determined by the formula given in this paper, the precision of ESR dating of marine carbonates can be improved.展开更多
基金supported by the National Key Research and Development Project of the Ministry of Science and Technology of China(Grant nos.2023YFC2812602 and 2021YFC2801401)the National Natural Science Foundation of China(Grant no.41941005).
文摘The harsh and remote environments of polar regions,such as the Arctic and Antarctica,pose significant challenges for scientific exploration,particularly in ice sampling.Extreme conditions,including low temperatures,ice,snow,and natural obstacles,make access to these areas difficult.However,ice sampling from glaciers,ice sheets,and icebergs is critical for scientific research,necessitating the development of specialized equipment.Unmanned ice-drilling systems offer a promising solution by enabling safe and efficient ice core sample collection in remote locations.Advances in extraterrestrial ice-drilling technology have inspired the development of automated drilling systems for Earth’s polar regions,with recent efforts focusing on lightweight,electric or solar-powered rovers which can tow or mount drilling systems.This paper introduces the concept of a robotic drilling system designed at Jilin University,China,for shallow drilling operations from an unmanned polar rover,highlighting its design and operational features.
文摘The ages of coral reef samples from several shallow drill holes in the South China Sea are determined by ESR and U-series (230Th/234U) methods. The experimental results show ideal agreement between ESR and U-series ages and that the coral reefs were formed in the early Holocene. In the determination of natural total dose of coral reef by use of the additive dose method good results can be obtained by exponential fitting, no matter how the effect of dose saturation is. It was found that the ratio of the natural ESR signal intensity ( I0) to the ESR signal intensity at dose saturation ( Imax) of sample can reflect the significance of a irradiation efficiency-k value. Using the k value of sample determined by the formula given in this paper, the precision of ESR dating of marine carbonates can be improved.