期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Mechanism of Mining-induced Slope Movement for Gullies Overlaying Shallow Coal Seams 被引量:8
1
作者 WANG Xu-feng ZHANG Dong-sheng +1 位作者 ZHANG Cheng-guo FAN Gang-wei 《Journal of Mountain Science》 SCIE CSCD 2013年第3期388-397,共10页
This paper provides an improved understanding of the movement mechanisms of both bed-rock gully and sandy soil gully when underground mining occurs underneath,followed by systematic analysis of the contributing factor... This paper provides an improved understanding of the movement mechanisms of both bed-rock gully and sandy soil gully when underground mining occurs underneath,followed by systematic analysis of the contributing factors such as mining advance direction,gully slope angle,gully erosion coefficient and mining height.This paper presents the results from monitoring,theoretical analyses and up to date modeling based on the geological features in the gully affected area,and the implications of these results to the success of roof support trial.It was observed that when mining occurred towards the gully,sliding of slope block along the fracture surface occurred,which resulted in unstable roof condition;when mining progressed away from the gully,polygon blocks developed in the gully slope and rotated in reversed direction forming hinged structure;within the bed-rock slope,the hinged structure was unstable due to shear failure of the polygon block;however,within the sandy soil slope,the structure was relatively stable due to the gradual rotating and subsiding of the polygon block.The increase of the value of slope angle and mining height lead to a faster and more intensive fracture development within the gully slope,which had a pronounced effect on gully slope stability and underground pressure.Various remediation approaches are hence proposed in this paper including introducing more powerful support and reasonable mining height,setting up working face along or away from gullies,using room and pillar,strip mining and backfill instead of longwall mining. 展开更多
关键词 Coal mine shallow coal seam Gullyslope Movement mechanism Roof control Miningmethod
下载PDF
Simulation research on the influence of eroded primary key strata on dynamic strata pressure of shallow coal seams in gully terrain 被引量:13
2
作者 Zhang Zhiqiang Xu Jialin +1 位作者 Zhu Weibing Shan Zhenjun 《International Journal of Mining Science and Technology》 2012年第1期51-55,共5页
In Huojitu Coal Mine of Shendong mining area, the dynamic strata pressure (DSP) accidents occurred when the working faces passed the gully terrain. Focusing on this problem, we used physical simulation experimental me... In Huojitu Coal Mine of Shendong mining area, the dynamic strata pressure (DSP) accidents occurred when the working faces passed the gully terrain. Focusing on this problem, we used physical simulation experimental method to thoroughly study the influence of eroded overlying primary key strata (PKS) in the gully terrain on DSP of shallow coal seams in this paper. The result show that when mining activities took place in the uphill section of shallow coal seams in gully terrain and the PKS were eroded, the blocks could not form stable bond-beam structures since the horizontal force of PKS blocks in adjacent sloping surfaces were relatively small. The sliding instability of blocks caused rapid increase of the load on the sub-key strata (SKS) blocks, which resulted into coal slide and roof fall as well as sharp drop of active columns. This led to DSP phenomenon. When the PKS blocks were intact, there was no DSP phenomenon to enable blocks provide certain horizontal force to maintain stable bond-beam structure. The simulation results were verified by the mining practices of working face 21306 crossing the gully terrain in the Huojitu Coal Mine. 展开更多
关键词 strata (KS) Being eroded Gully terrain shallow coal seam Dynamic strata pressure
下载PDF
Fracture mechanics model of fully mechanized top coal caving of shallow coal seams and its application 被引量:6
3
作者 Zhang Jiangong Miao Xiexing +1 位作者 Huang Yanli Li Meng 《International Journal of Mining Science and Technology》 SCIE EI 2014年第3期349-352,共4页
Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using ... Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using the fracture mechanics theory. The relationships between the fracture length of the roof and the working resistance of the supports were discovered, and the correlations between the load on the overlying strata and the ratio of the crack's length to the thickness of the roof were obtained. Using a working face of Jindi Coal Mine, Xing county Shanxi province as an example, the relationships between the fracture length of the roof and the working resistance of the supports were analysed in detail. The results give a design basis in hydraulic top coal caving supports, which could provide useful references in the practical application. On-site experiment proves that the periodic weighting step interval of the caving face is 15–16 m, which is basically consistent with the theoretical analysis results, and indicates that the mechanized caving hydraulic support is capable of meeting the support requirements in the mining of a super-thick but shallowly buried coal seam. 展开更多
关键词 Super-thick shallow coal seam Fully mechanized top-caving mining Main roof Fracture mechanics model0
下载PDF
Characteristics and stability of slope movement response to underground mining of shallow coal seams away from gullies 被引量:8
4
作者 Zhang Dongsheng Fan Gangwei Wang Xufeng 《International Journal of Mining Science and Technology》 2012年第1期47-50,共4页
Underground pressure is abnormal during mining of shallow coal seams under gullies. We studied gully slope movements, subject to underground mining, with physical simulation and theoretical analysis. The rules disclos... Underground pressure is abnormal during mining of shallow coal seams under gullies. We studied gully slope movements, subject to underground mining, with physical simulation and theoretical analysis. The rules disclose that the slope rock slides horizontally in response to mining in the direction of gullies and rotates reversely with the appearance of a polygon block in mining away from gullies. We focused our attention on the case of mining away from a gully. We built a mechanical model in terms of a polygon block hinged structure and investigated the variation of horizontal thrust and shear force at the hinged point in relation to the rotation angle under different fragmentations. The Sliding-Rotation instability conditions of the polygon block hinged structure are presented based on the analyses of sliding instability and rotation instability. These results can serve as a theoretical guide for roof control during mining away from gullies in a coalfield defined by gullies. 展开更多
关键词 shallow coal seam Mining away from gullies Polygon block hinged structure Sliding instability Rotation instability
下载PDF
Experimental research of overburden movement and subsurface water seeping in shallow seam mining 被引量:10
5
作者 Qingxiang Huang 《Journal of University of Science and Technology Beijing》 CSCD 2007年第6期483-489,共7页
Shallow seam coal field has the largest coal reserve in China. Mining in shallow depth causes serious problems, and subsurface dewatering is a major issue. In this paper, the physical simulating models were prepared t... Shallow seam coal field has the largest coal reserve in China. Mining in shallow depth causes serious problems, and subsurface dewatering is a major issue. In this paper, the physical simulating models were prepared to study overburden movement and aquiclude stability in the shallow seam mining of Yushuwan Coalfield, China. According to the characteristic of clay aquiclude and bedrock in the overburden, the proper simulation materials for simulating the plastic clay aquiclude layers and brittle bedrock layers were determined by the stress-strain tests and hydrophilic tests. The physical simulating models of solid medium and two phases of solid-liquid medium were carried out to simulate the failure and caving process of the roof and overburden, as well as the subsurface water seeping. Based on the simulation, it was found that the movement of clay aquiclude follows the movement of the underlying bedrock layers. The stability of aquiclude is mainly affected by cracks in fracture zone. The tests also showed that the best way to control the stability of aquiclude is to reduce the subsiding gradient, and there is a possibility of ground water conservation under longwall mining in Yushuwan Mine. This research provides a foundation for further study on mining dewatering and water conservation. 展开更多
关键词 physical simulation aquiclude CRACK mining dewatering shallow seam mining
下载PDF
Study on water resisting property of subsurface aquiclude in shallow coal seam mining 被引量:4
6
作者 黄庆享 《Journal of Coal Science & Engineering(China)》 2008年第3期369-372,共4页
According to the characteristic of clay aquiclude of overburden,the proper simulation materials and proportions of mixture for simulating the plastic clay aquiclude layers were developed,and the plastic similarity con... According to the characteristic of clay aquiclude of overburden,the proper simulation materials and proportions of mixture for simulating the plastic clay aquiclude layers were developed,and the plastic similarity conditions were setup.Thus,the simili- tude and simulation method in whole stress-strain was progressed.Furthermore,the simulation condition and material proportions in water reaction property and crack closing property were also put forward.Based on systematical tests,the development and distri- bution of mined cracks in roof and subsurface aquiclude was found and the stability of aquiclude was analyzed at all.At last,the key section and key index of aquclude stability was advanced.It is found that the movement of clay aquiclude follows the movement of the underlying bedrock layers.The basic caving mechanism of the overburden roof strata was also presented. 展开更多
关键词 shallow seam aquiclude water conservation mining simulation model test
下载PDF
Underground pressure characteristics analysis in back-gully mining of shallow coal seam under a bedrock gully slope 被引量:17
7
作者 Wang Xufeng Zhang Dongsheng +1 位作者 Fan Gangwei Zhang Chengguo 《Mining Science and Technology》 EI CAS 2011年第1期23-27,共5页
We studied underground pressure and its mechanism during back-gully mining in a shallow coal seam under a bedrock gully slope,by means of physical simulation,numerical modeling and field monitoring.The results show th... We studied underground pressure and its mechanism during back-gully mining in a shallow coal seam under a bedrock gully slope,by means of physical simulation,numerical modeling and field monitoring.The results show that the intensity of underground pressure is related to its relative position at the coalface.The underground pressure is intensive and the support resistance reaches a maximum when the coalface is at the bottom of the gully,whereas the underground pressure is moderate and decreases gradually when the coalface passes the gully.The mechanism of these changes is analyzed when the slope rotated in a reversed direction to the slope dip during back-gully mining and form an unstable,multilateral block hinged structure,due to slipping.The subsidence of multilateral blocks is considerable when the block fragmentation is small,resulting in enormous changes in the underground pressure.With an increase in the mass of the block body,the block displacement will be reduced in conjunction with an increased clamp effect by both the unbroken rocks and broken rocks in the goaf,resulting in a decrease of the underground pressure. 展开更多
关键词 shallow coal seam Gully slope Back-gully mining Underground pressure
下载PDF
Effects of gully terrain on stress field distribution and ground pressure behavior in shallow seam mining 被引量:7
8
作者 Li Jianwei Liu Changyou Zhao Tong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期255-260,共6页
This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain.This approach combines numerical simulations and field tests based... This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain.This approach combines numerical simulations and field tests based on the conditions of gully terrain in the Chuancao Gedan Mine.The effects of gully terrain on the in situ stress field of coal beds can be identified by the ratio of self-weight stress to vertical stress(η) at the location corresponding to the maximum vertical stress.Based on the function η =j(h),the effect of gully terrain on the stress field of overlying strata of the entire field can be characterized as a significantly affected area,moderately affected area,or non-affected area.Working face 6106 in the Chuancao Gedan Mine had a coal bed Jepth <80 m and was located in what was identified as a significantly affected area.Hence,mining may cause sliding of the gully slope and increased loading(including significant dynamic loading) on the roof strata.Field tests suggest that significant dynamic pressures were observed at the body and foot of the gully slope,and that dynamic loadings were observed upslope of the working face expansion,provided that the expanding direction of the working face is parallel to the gully. 展开更多
关键词 Gully terrain shallow seam Stress field Slope motion Ground pressure behavior
下载PDF
Roof structure theory and support resistance determination of longwall face in shallow seam 被引量:2
9
作者 黄庆享 《Journal of Coal Science & Engineering(China)》 2003年第2期21-24,共4页
This paper presents the structure models founded in shallow seam, the roof asymmetry arch with three articulations in roof first weighting and the step voussoir beam in roof periodic weighting. These structure models ... This paper presents the structure models founded in shallow seam, the roof asymmetry arch with three articulations in roof first weighting and the step voussoir beam in roof periodic weighting. These structure models are differ from classic theory, it establishes the new roof control theory of instability structure roof, especially in shallow seam. Based on the new roof structure theory, the support working state of "given sliding load" is put forward, and the factor of load transmitting is introduced to determine the load on roof structure. Therefore, the proper and accurate calculating methods of support resistance are established. Based on this, the dynamic structure theory in shallow seam could be predicted. 展开更多
关键词 shallow seam roof structure support resistance load transmitting
下载PDF
Ground fissure development regularity and formation mechanism of shallow buried coal seam mining with Karst landform in Jiaozi coal mine: a case study 被引量:2
10
作者 ZHU Heng-zhong 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3101-3120,共20页
A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geogr... A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform. 展开更多
关键词 Karst landform shallow buried coal seam Development regularity Formation mechanism Ground fissure Repeated mining
下载PDF
Plastic zone analysis and support optimization of shallow roadway with weakly cemented soft strata 被引量:1
11
作者 Zhang Jihua Wang Lianguo +1 位作者 Li Qinghai Zhu Shuangshuang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期395-400,共6页
Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to moni... Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to monitor the loose range and level of surrounding rocks. A mechanical model of weakly cemented roadway was established, including granular material based on the measured results. The model was then used to determine the plastic zone radium. The predicted results agree well with measured results which provide valuable theoretical references for the analysis of surrounding rock stability and support reinforcing design of weakly cemented roadways. Finally, a combined supporting scheme of whole section bolting and grouting was proposed based on the original supporting scheme. It is proved that this support plan can effectively control the deformation and plastic zone expansion of the roadway surrounding rock and thus ensure the long-term stable and safe mining. 展开更多
关键词 shallow coal seam Weakly cemented soft strata Granular material Geological radar Whole section bolting and grouting Combined supporting
下载PDF
Practice and adaptable conditions classification of aquifer-protective mining in longwall coalface for shallow seam with thin bedrock
12
作者 MA Li-qiang ZHANG Dong-sheng ZHAO Yong-feng 《Journal of Coal Science & Engineering(China)》 2010年第1期1-5,共5页
A set of adaptable conditions classification of aquifer-protective mining in the Iongwall coalface for shallow coal seams with thin bedrock was put forward to deal with the conflict between water protection and high e... A set of adaptable conditions classification of aquifer-protective mining in the Iongwall coalface for shallow coal seams with thin bedrock was put forward to deal with the conflict between water protection and high efficiency for the mining field in west China. This classification was suitable for shallow coal seams with different thickness and was beneficial to the local environmental protection. Using the 3-Universal Distinct Element Code (3DEC) numerical software, the height of the fractured zones for shallow coal seams with thin bedrock was calculated and analyzed, and its predicting formula was achieved. Meanwhile, according to the lithology and the weathering degree of the shallow coal seam the thickness of the protective layer was determined as 10 m and the overlying water body of loose water-bearing sand for shallow coal seams with thin bedrock was divided into three types, namely, weak, medium and strong. Based on these, the necessary bedrock thickness of the Iongwall coalface for shallow coal seams with thin bedrock was confined according to the different mining height and water yield nature of the overlying loose water-bearing sand. Combined with the present mining status, a set of new methods of adaptable conditions classification of aquifer-protective mining technology in the Iongwall coalface for shallow coal seams with thin bedrock was put forward. 展开更多
关键词 thin bedrock shallow seam aquifer-protective mining fractured zone protective layer
下载PDF
Research on downward crack closing of clay aquiclude in shallow coal seam safety mining
13
作者 HUANG Qing-xiang ZHANG Wen-zhong 《Journal of Coal Science & Engineering(China)》 2011年第3期349-354,共6页
The water resisting property of aquiclude is the key factor of water conservation and safety mining, and the mining induced cracks in aquiclude is major factor of water resisting property. The aquiclude is composed by... The water resisting property of aquiclude is the key factor of water conservation and safety mining, and the mining induced cracks in aquiclude is major factor of water resisting property. The aquiclude is composed by loess layer and red clay layer in Yushuwan Coal Mine, and the water reaction property of clay and loess of aquiclude was tested by soil mechanics method. The permeability coefficient of the loess is 0.856 m/d and the clay is 0.434 m/d. The dilatability coefficient of the loess is 16.1% and the clay is 14.6%. Through physical solid-liquid simulation with whole stress-stain similarity, the distribution of "downward crack zone" and "upward crack zone" was found to be the major factor of aquiclude stability. The downward crack closing length is about 30% of the downward crack length. The expanding of clay and loess with water are principal factors of downward crack closing. At last, the mechanical model of downward crack closing was constructed, and the criterion of crack closing was put forward at all. This work will provides the theoretical base for aquiclude stability research and safety mining in shallow seam. 展开更多
关键词 shallow coal seam SIMULATION clay aquiclude downward crack crack closing
下载PDF
STUDY ON FRACTURE AND MOVEMENT OF OVERLYING BEDROCK IN SHALLOW SEAM UNDER THICK SAND
14
作者 柴敬 张俊云 石平五 《Journal of Coal Science & Engineering(China)》 1999年第2期8-12,共5页
Based on the field observation results of ground pressure in shallow seam, the movement characteristics of overlying strata in front and behind and the subsidence of the earth’s surface are studied. Also, the paper a... Based on the field observation results of ground pressure in shallow seam, the movement characteristics of overlying strata in front and behind and the subsidence of the earth’s surface are studied. Also, the paper analyzes the stability of overlying bedrock according to the theory of voussoir beam’s "S-R" stability and the hypothesis of step subsidence. It points out that slide instability is the fundamental form of overlying bedrock movement. 展开更多
关键词 shallow seam BEDROCK fracture and movement slide instability
全文增补中
Mining-induced variation in water levels in unconsolidated aquifers and mechanisms of water preservation in mines 被引量:2
15
作者 FAN Gangwei ZHOU Lei 《Mining Science and Technology》 EI CAS 2010年第6期814-819,共6页
Phreatic water resources are widely found in thick unconsolidated surface layers in western China, where water levels respond sensitively and quickly to large-scale underground mining in conjunction with shallow coal ... Phreatic water resources are widely found in thick unconsolidated surface layers in western China, where water levels respond sensitively and quickly to large-scale underground mining in conjunction with shallow coal seams. Longwall face #32201 of the Bulianta Coal Mine, in the Shendong coalfield was selected as an industrial trail base, where field observations on ground-water levels were conducted when the working face was below a water-rich area. The space-time variation in the behavior of un-consolidated water levels in response to underground mining and its relation with of advance were observed through the field trials. The basic conditions for water preservation in mines are presented and the mechanisms of water preservation in mining analyzed, given the geological condition of two key strata and a severely weathered layer buried in the overburden. The field trails show that water preservation in mining shallow coal seams can be successful under suitable conditions, providing new technology for envi-ronmental protection in the desert coalfields of northwestern China. 展开更多
关键词 shallow coal seams longwall coalface water preservation in mines water level
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部