期刊文献+
共找到188篇文章
< 1 2 10 >
每页显示 20 50 100
Query Translation on the Fly in Deep Web Integration 被引量:2
1
作者 JIANG Fangjiao JIA Linlin MENG Xiaofeng 《Wuhan University Journal of Natural Sciences》 CAS 2007年第5期819-824,共6页
To facilitate users to access the desired information, many researches have dedicated to the Deep Web (i.e. Web databases) integration. We focus on query translation which is an important part of the Deep Web integr... To facilitate users to access the desired information, many researches have dedicated to the Deep Web (i.e. Web databases) integration. We focus on query translation which is an important part of the Deep Web integration. Our aim is to construct automatically a set of constraints mapping rules so that the system can translate the query from the integrated interface to the Web database interfaces based on them. We construct a concept hierarchy for the attributes of the query interfaces, especially, store the synonyms and the types (e.g. Number, Text, etc.) for every concept At the same time, we construct the data hierarchies for some concepts if necessary. Then we present an algorithm to generate the constraint mapping rules based on these hierarchies. The approach is suitable for the scalability of such application and can be extended easily from one domain to another for its domain independent feature. The results of experiment show its effectiveness and efficiency. 展开更多
关键词 deep Web data integration query translation constraint mapping rules
下载PDF
Upper bound analysis for deep tunnel face with joined failure mechanism of translation and rotation 被引量:1
2
作者 许敬叔 杜佃春 杨子汉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4310-4317,共8页
A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water press... A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water pressure. The calculations were based on limit analysis method of upper bound theory, with the employment of non-associated Mohr-Coulomb flow rule. Nonlinear failure criterion was adopted. Optimized analysis was conducted for the effects of the tunnel depth, pore water pressure coefficient, the initial cohesive force and nonlinear coefficient on supporting force. The upper bound solutions are obtained by optimum method. Results are listed and compared with the previously published solutions for the verification of correctness and effectiveness. The failure shapes are presented, and results are discussed for different pore water pressure coefficients and nonlinear coefficients of tunnel face. 展开更多
关键词 deep TUNNEL UPPER BOUND translation and ROTATION w
下载PDF
The Meaning of Surface Structure and Deep Structure to Translation
3
作者 罗源 《海外英语》 2014年第23期151-152,共2页
Surface structure and deep structure first come up with by Chomsky is an innovative action in linguistics. Despite the arguments involved around surface structure and deep structure, it is instructional to English-Chi... Surface structure and deep structure first come up with by Chomsky is an innovative action in linguistics. Despite the arguments involved around surface structure and deep structure, it is instructional to English-Chinese translation to some degree and its scientific connotation is meaningful to deepen language study and construct related disciplinary both in theory and practice. 展开更多
关键词 SURFACE STRUCTURE deep STRUCTURE ENGLISH-CHINESE t
下载PDF
Full‑Fiber Auxetic‑Interlaced Yarn Sensor for Sign‑Language Translation Glove Assisted by Artificial Neural Network 被引量:13
4
作者 Ronghui Wu Sangjin Seo +2 位作者 Liyun Ma Juyeol Bae Taesung Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期269-282,共14页
Yarn sensors have shown promising application prospects in wearable electronics owing to their shape adaptability, good flexibility, and weavability. However, it is still a critical challenge to develop simultaneously... Yarn sensors have shown promising application prospects in wearable electronics owing to their shape adaptability, good flexibility, and weavability. However, it is still a critical challenge to develop simultaneously structure stable, fast response, body conformal, mechanical robust yarn sensor using full microfibers in an industrial-scalable manner. Herein, a full-fiber auxetic-interlaced yarn sensor(AIYS) with negative Poisson’s ratio is designed and fabricated using a continuous, mass-producible, structure-programmable, and low-cost spinning technology. Based on the unique microfiber interlaced architecture, AIYS simultaneously achieves a Poisson’s ratio of-1.5, a robust mechanical property(0.6 c N/dtex), and a fast train-resistance responsiveness(0.025 s), which enhances conformality with the human body and quickly transduce human joint bending and/or stretching into electrical signals. Moreover, AIYS shows good flexibility, washability, weavability, and high repeatability. Furtherly, with the AIYS array, an ultrafast full-letter sign-language translation glove is developed using artificial neural network. The sign-language translation glove achieves an accuracy of 99.8% for all letters of the English alphabet within a short time of 0.25 s. Furthermore, owing to excellent full letter-recognition ability, real-time translation of daily dialogues and complex sentences is also demonstrated. The smart glove exhibits a remarkable potential in eliminating the communication barriers between signers and non-signers. 展开更多
关键词 Negative Poisson’s ratio yarns Interlaced yarn sensors Smart glove deep learning Sign-language translation
下载PDF
Corpus Augmentation for Improving Neural Machine Translation 被引量:2
5
作者 Zijian Li Chengying Chi Yunyun Zhan 《Computers, Materials & Continua》 SCIE EI 2020年第7期637-650,共14页
The translation quality of neural machine translation(NMT)systems depends largely on the quality of large-scale bilingual parallel corpora available.Research shows that under the condition of limited resources,the per... The translation quality of neural machine translation(NMT)systems depends largely on the quality of large-scale bilingual parallel corpora available.Research shows that under the condition of limited resources,the performance of NMT is greatly reduced,and a large amount of high-quality bilingual parallel data is needed to train a competitive translation model.However,not all languages have large-scale and high-quality bilingual corpus resources available.In these cases,improving the quality of the corpora has become the main focus to increase the accuracy of the NMT results.This paper proposes a new method to improve the quality of data by using data cleaning,data expansion,and other measures to expand the data at the word and sentence-level,thus improving the richness of the bilingual data.The long short-term memory(LSTM)language model is also used to ensure the smoothness of sentence construction in the process of sentence construction.At the same time,it uses a variety of processing methods to improve the quality of the bilingual data.Experiments using three standard test sets are conducted to validate the proposed method;the most advanced fairseq-transformer NMT system is used in the training.The results show that the proposed method has worked well on improving the translation results.Compared with the state-of-the-art methods,the BLEU value of our method is increased by 2.34 compared with that of the baseline. 展开更多
关键词 Neural machine translation corpus argumentation model improvement deep learning data cleaning
下载PDF
Implications from translational cross-validation of clinical assessment tools for diagnosis and treatment in psychiatry 被引量:3
6
作者 Katrin Aryutova Rositsa Paunova +2 位作者 Sevdalina Kandilarova Anna Todeva-Radneva Drozdstoy Stoyanov 《World Journal of Psychiatry》 SCIE 2021年第5期169-180,共12页
Traditional therapeutic methods in psychiatry,such as psychopharmacology and psychotherapy help many people suffering from mental disorders,but in the long-term prove to be effective in a relatively small proportion o... Traditional therapeutic methods in psychiatry,such as psychopharmacology and psychotherapy help many people suffering from mental disorders,but in the long-term prove to be effective in a relatively small proportion of those affected.Therapeutically,resistant forms of mental disorders such as schizophrenia,major depressive disorder,and bipolar disorder lead to persistent distress and dysfunction in personal,social,and professional aspects.In an effort to address these problems,the translational approach in neuroscience has initiated the inclusion of novel or modified unconventional diagnostic and therapeutic techniques with promising results.For instance,neuroimaging data sets from multiple modalities provide insight into the nature of pathophysiological mechanisms such as disruptions of connectivity,integration,and segregation of neural networks,focusing on the treatment of mental disorders through instrumental biomedical methods such as electro-convulsive therapy(ECT),transcranial magnetic stimulation(TMS),transcranial direct current stimulation(tDCS)and deep brain stimulation(DBS).These methodologies have yielded promising results that have yet to be understood and improved to enhance the prognosis of the severe and persistent psychotic and affective disorders.The current review is focused on the translational approach in the management of schizophrenia and mood disorders,as well as the adaptation of new transdisciplinary diagnostic tools such as neuroimaging with concurrently administered psychopathological questionnaires and integration of the results into the therapeutic framework using various advanced instrumental biomedical tools such as ECT,TMS,tDCS and DBS. 展开更多
关键词 translational neuroscience Evidence-based psychiatry SCHIZOPHRENIA Affective disorders PSYCHOPHARMACOLOGY Electro-convulsive therapy Transcranial magnetic stimulation Transcranial direct current stimulation deep brain stimulation
下载PDF
A Robust Model for Translating Arabic Sign Language into Spoken Arabic Using Deep Learning
7
作者 Khalid M.O.Nahar Ammar Almomani +1 位作者 Nahlah Shatnawi Mohammad Alauthman 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2037-2057,共21页
This study presents a novel and innovative approach to auto-matically translating Arabic Sign Language(ATSL)into spoken Arabic.The proposed solution utilizes a deep learning-based classification approach and the trans... This study presents a novel and innovative approach to auto-matically translating Arabic Sign Language(ATSL)into spoken Arabic.The proposed solution utilizes a deep learning-based classification approach and the transfer learning technique to retrain 12 image recognition models.The image-based translation method maps sign language gestures to corre-sponding letters or words using distance measures and classification as a machine learning technique.The results show that the proposed model is more accurate and faster than traditional image-based models in classifying Arabic-language signs,with a translation accuracy of 93.7%.This research makes a significant contribution to the field of ATSL.It offers a practical solution for improving communication for individuals with special needs,such as the deaf and mute community.This work demonstrates the potential of deep learning techniques in translating sign language into natural language and highlights the importance of ATSL in facilitating communication for individuals with disabilities. 展开更多
关键词 Sign language deep learning transfer learning machine learning automatic translation of sign language natural language processing Arabic sign language
下载PDF
English-Chinese Neural Machine Translation Based on Self-organizing Mapping Neural Network and Deep Feature Matching
8
作者 Shu Ma 《IJLAI Transactions on Science and Engineering》 2024年第3期1-8,共8页
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s... The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model. 展开更多
关键词 Chinese-English translation model Self-organizing mapping neural network deep feature matching deep learning
原文传递
A Comprehensive Survey on Deep Learning Multi-Modal Fusion:Methods,Technologies and Applications
9
作者 Tianzhe Jiao Chaopeng Guo +2 位作者 Xiaoyue Feng Yuming Chen Jie Song 《Computers, Materials & Continua》 SCIE EI 2024年第7期1-35,共35页
Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant resear... Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges. 展开更多
关键词 Multi-modal fusion REPRESENTATION translation ALIGNMENT deep learning comparative analysis
下载PDF
Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image
10
作者 Yiwei Chen Yi He +3 位作者 Hong Ye Lina Xing Xin Zhang Guohua Shi 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期105-113,共9页
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im... The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error. 展开更多
关键词 Fundus fluorescein angiography image fundus structure image image translation unified deep learning model generative adversarial networks
下载PDF
Fluo-Fluo translation based on deep learning 被引量:1
11
作者 Zhengfen Jiang Boyi Li +3 位作者 Tho N.H.T.Tran Jiehui Jiang Xin Liu Dean Ta 《Chinese Optics Letters》 SCIE EI CAS CSCD 2022年第3期82-88,共7页
Fluorescence microscopy technology uses fluorescent dyes to provide highly specific visualization of cell components,which plays an important role in understanding the subcellular structure.However,fluorescence micros... Fluorescence microscopy technology uses fluorescent dyes to provide highly specific visualization of cell components,which plays an important role in understanding the subcellular structure.However,fluorescence microscopy has some limitations such as the risk of non-specific cross labeling in multi-labeled fluorescent staining and limited number of fluo-rescence labels due to spectral overlap.This paper proposes a deep learning-based fluorescence to fluorescence[Flu0-Fluo]translation method,which uses a conditional generative adversarial network to predict a fluorescence image from another fluorescence image and further realizes the multi-label fluorescent staining.The cell types used include human motor neurons,human breast cancer cells,rat cortical neurons,and rat cardiomyocytes.The effectiveness of the method is verified by successfully generating virtual fluorescence images highly similar to the true fluorescence images.This study shows that a deep neural network can implement Fluo-Fluo translation and describe the localization relationship between subcellular structures labeled with different fluorescent markers.The proposed Fluo-Fluo method can avoid non-specific cross labeling in multi-label fluorescence staining and is free from spectral overlaps.In theory,an unlimited number of fluorescence images can be predicted from a single fluorescence image to characterize cells. 展开更多
关键词 deep learning conditional generative adversarial network fluorescence image image translation
原文传递
Deep transfer network of heterogeneous domain feature in machine translation
12
作者 Yupeng Liu Yanan Zhang Xiaochen Zhang 《High-Confidence Computing》 2022年第4期8-13,共6页
In order to address the shortcoming of feature representation limitation in machine translation(MT)system,this paper presents a feature transfer method in MT.Meta feature transfer of the decoding process considered no... In order to address the shortcoming of feature representation limitation in machine translation(MT)system,this paper presents a feature transfer method in MT.Meta feature transfer of the decoding process considered not only their own translation system,but also transferred knowledge of another translation system.The domain meta feature and the objective function of domain adaptation are used to better model the domain transfer task.In this paper,extensive experiments and comparisons are made.The experiment results show that the proposed model has a significant improvement in domain transfer task.The first model has better performance than baseline system,which improves 3.06 BLEU score on the news test set,improves 3.27 BLEU score on the education test set,and improves 3.93 BLEU score on the law test set;The second model improves 3.16 BLEU score on the news test set,improves 3.54 BLEU score on the education test set,and improves 4.2 BLEU score on the law test set. 展开更多
关键词 Neural translation model deep transfer network Heterogeneous domain Meta feature
原文传递
Deep Web数据集成中查询处理的研究与进展 被引量:4
13
作者 姜芳艽 孟小峰 《计算机科学与探索》 CSCD 2009年第2期113-129,共17页
随着Web上在线数据库的大量涌现,Deep Web数据集成成为当前信息领域的一个研究热点,而查询处理是其中的一个重要的组成部分。由于Web数据库具有规模大、自治性、异构性以及动态性等特点,使得Deep Web数据集成中的查询处理比传统的分布... 随着Web上在线数据库的大量涌现,Deep Web数据集成成为当前信息领域的一个研究热点,而查询处理是其中的一个重要的组成部分。由于Web数据库具有规模大、自治性、异构性以及动态性等特点,使得Deep Web数据集成中的查询处理比传统的分布环境下的查询处理更具挑战性。围绕Deep Web数据集成中查询处理的三个关键研究点:模式匹配、Web数据库的选择以及查询转换,综述了近年来国际上相关的、具代表性的研究成果,分析了这些方法的优缺点,总结并展望了未来的发展方向。 展开更多
关键词 深层网络 数据集成 模式匹配 数据库选择 查询转换
下载PDF
Deep Web信息集成系统中查询转换 被引量:2
14
作者 王兵 刘彩虹 《计算机技术与发展》 2008年第7期176-180,共5页
随着Internet信息的迅速增长,许多Web信息已经被各种各样的可搜索在线数据库所深化,并被隐藏在Web查询接口下面。传统的搜索引擎由于技术原因不能索引这些信息——Deep Web信息。由于Deep Web惟一"入口点"是查询接口,为使查... 随着Internet信息的迅速增长,许多Web信息已经被各种各样的可搜索在线数据库所深化,并被隐藏在Web查询接口下面。传统的搜索引擎由于技术原因不能索引这些信息——Deep Web信息。由于Deep Web惟一"入口点"是查询接口,为使查询接口自动产生有意义有查询,给出了Deep Web信息集成系统框架,提出了基于数据类型的搜索驱动的用户查询转换方法,基于此设计并实现了一个针对中文Deep Web信息集成原型系统。通过在实际Deep Web站点上的实验证明了此方法是非常有效的。 展开更多
关键词 deep WEB 信息集成 表单抽取 查询转换
下载PDF
Deep Web搜索中查询转换的研究
15
作者 邵秀丽 李云龙 张文龙 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期67-73,共7页
基于同义属性和成组属性给出了查询转换映射机制,解决了如何从源查询串到目标查询串的较为准确的映射,实现了检索对应各源网址的转换查询子串,相应的方案应用于国内20个代表性的图书领域的Deep Web站点,较好地实现了对这些站点的Deep We... 基于同义属性和成组属性给出了查询转换映射机制,解决了如何从源查询串到目标查询串的较为准确的映射,实现了检索对应各源网址的转换查询子串,相应的方案应用于国内20个代表性的图书领域的Deep Web站点,较好地实现了对这些站点的Deep Web图书信息的搜索. 展开更多
关键词 查询转换 深层网络 映射机制 查询串
下载PDF
DLBT:Deep Learning-Based Transformer to Generate Pseudo-Code from Source Code
16
作者 Walaa Gad Anas Alokla +2 位作者 Waleed Nazih Mustafa Aref Abdel-badeeh Salem 《Computers, Materials & Continua》 SCIE EI 2022年第2期3117-3132,共16页
Understanding the content of the source code and its regular expression is very difficult when they are written in an unfamiliar language.Pseudo-code explains and describes the content of the code without using syntax... Understanding the content of the source code and its regular expression is very difficult when they are written in an unfamiliar language.Pseudo-code explains and describes the content of the code without using syntax or programming language technologies.However,writing Pseudo-code to each code instruction is laborious.Recently,neural machine translation is used to generate textual descriptions for the source code.In this paper,a novel deep learning-based transformer(DLBT)model is proposed for automatic Pseudo-code generation from the source code.The proposed model uses deep learning which is based on Neural Machine Translation(NMT)to work as a language translator.The DLBT is based on the transformer which is an encoder-decoder structure.There are three major components:tokenizer and embeddings,transformer,and post-processing.Each code line is tokenized to dense vector.Then transformer captures the relatedness between the source code and the matching Pseudo-code without the need of Recurrent Neural Network(RNN).At the post-processing step,the generated Pseudo-code is optimized.The proposed model is assessed using a real Python dataset,which contains more than 18,800 lines of a source code written in Python.The experiments show promising performance results compared with other machine translation methods such as Recurrent Neural Network(RNN).The proposed DLBT records 47.32,68.49 accuracy and BLEU performance measures,respectively. 展开更多
关键词 Natural language processing long short-term memory neural machine translation pseudo-code generation deep learning-based transformer
下载PDF
基于深度学习的代码生成方法研究进展 被引量:5
17
作者 杨泽洲 陈思榕 +3 位作者 高翠芸 李振昊 李戈 吕荣聪 《软件学报》 EI CSCD 北大核心 2024年第2期604-628,共25页
关注根据自然语言描述生成相关代码片段的代码生成(code generation)任务.在软件开发过程中,开发人员常常会面临两种情形.一种是通用功能的实现,需要开发人员编写大量重复且技术含量较低的代码;另一种是依赖于特定任务要求,需要开发人... 关注根据自然语言描述生成相关代码片段的代码生成(code generation)任务.在软件开发过程中,开发人员常常会面临两种情形.一种是通用功能的实现,需要开发人员编写大量重复且技术含量较低的代码;另一种是依赖于特定任务要求,需要开发人员查询文档或使用其他工具才能完成的代码编写工作.代码生成作为最直接辅助开发人员完成编码的工作受到学术界和工业界的广泛关注.让机器理解用户需求,自行完成程序编写也一直是软件工程领域重点关注的问题之一.近年来,随着深度学习在软件工程领域任务中的不断发展,尤其是预训练模型的引入使得代码生成任务取得了十分优异的性能.系统梳理当前基于深度学习的代码生成相关工作,并将目前基于深度学习的代码生成方法分为3类:基于代码特征的方法、结合检索的方法以及结合后处理的方法.第1类是指使用深度学习算法利用代码特征进行代码生成的方法,第2类和第3类方法依托于第1类方法进行改进.依次对每一类方法的已有研究成果进行系统的梳理、分析与总结.除此之外,汇总并分析已有的代码生成工作中常用的语料库与评估方法,以便于后续研究进行实验设计.最后,对代码生成方法研究进展进行总结,并针对未来值得关注的研究方向进行展望. 展开更多
关键词 代码生成 深度学习 代码检索 后处理 机器翻译
下载PDF
深度学习优化器进展综述 被引量:9
18
作者 常禧龙 梁琨 李文涛 《计算机工程与应用》 CSCD 北大核心 2024年第7期1-12,共12页
优化器是提高深度学习模型性能的关键因素,通过最小化损失函数使得模型的参数和真实参数接近从而提高模型的性能。随着GPT等大语言模型成为自然语言处理领域研究焦点,以梯度下降优化器为核心的传统优化器对大模型的优化效果甚微。因此... 优化器是提高深度学习模型性能的关键因素,通过最小化损失函数使得模型的参数和真实参数接近从而提高模型的性能。随着GPT等大语言模型成为自然语言处理领域研究焦点,以梯度下降优化器为核心的传统优化器对大模型的优化效果甚微。因此自适应矩估计类优化器应运而生,其在提高模型泛化能力等方面显著优于传统优化器。以梯度下降、自适应梯度和自适应矩估计三类优化器为主线,分析其原理及优劣。将优化器应用到Transformer架构中,选取法-英翻译任务作为评估基准,通过实验深入探讨优化器在特定任务上的效果差异。实验结果表明,自适应矩估计类优化器在机器翻译任务上有效提高模型的性能。同时,展望优化器的发展方向并给出在具体任务上的应用场景。 展开更多
关键词 优化器 机器翻译 TRANSFORMER 深度学习 学习率预热算法
下载PDF
基于人工智能的深度神经网络优化英语机器翻译 被引量:1
19
作者 宋纯花 《现代电子技术》 北大核心 2024年第3期80-84,共5页
机器翻译是一个持续研究的领域,其主要目的是消除语言障碍。随着技术的不断发展,机器翻译在过去几十年里经历了从早期的目标语言直接替换源语言的方法到如今的数据驱动模型的范式转变,其中包括统计和神经机器翻译方法。文中采用一种基... 机器翻译是一个持续研究的领域,其主要目的是消除语言障碍。随着技术的不断发展,机器翻译在过去几十年里经历了从早期的目标语言直接替换源语言的方法到如今的数据驱动模型的范式转变,其中包括统计和神经机器翻译方法。文中采用一种基于神经网络的深度学习技术,专注于英语翻译,同时还使用了Bahdanau注意机制。为了支撑研究,使用了约30923个句子的平行语料库,其中包含一些新闻和日常生活中常用的句子。拟议的系统遵循70∶30的标准进行了训练和测试。为评估拟议系统的效率,采用了多个自动评估指标,如BLEU、F-measure、NIST、WER等。研究表明,拟议的模型在BLEU分数上取得了平均45.83的结果,显示了其在英语翻译任务上的优异表现。 展开更多
关键词 神经网络 深度学习 机器翻译 LSTM 注意机制 BLEU
下载PDF
基于智能语音的翻译机器人自动化控制系统设计 被引量:2
20
作者 杨维 秦波涛 《计算机测量与控制》 2024年第5期102-108,共7页
为提升自动控制效果,加快翻译速率,设计基于智能语音的翻译机器人自动化控制系统;采集外界智能语音信号,利用A/D转换器得到数字信号,启动语音唤醒模块激活翻译机器人,听写模式识别复杂语音信号,命令模式识别简单语音信号,得到语言文本... 为提升自动控制效果,加快翻译速率,设计基于智能语音的翻译机器人自动化控制系统;采集外界智能语音信号,利用A/D转换器得到数字信号,启动语音唤醒模块激活翻译机器人,听写模式识别复杂语音信号,命令模式识别简单语音信号,得到语言文本识别结果,通过深度学习关键词检测方法提取关键词作为翻译机器人的自动化控制指令,通过单片机识别自动化控制指令;实验结果表明,该系统可有效采集外界智能语音信号,在0.6 s至2 s之间时,该外界智能语音信号的振幅较小;系统运行时间最短为5.6 s,响应速度在11 m/s左右,控制误差最小为5.1%,BLEU值最高达到了42.75,控制准确率达到95.7%,提取智能语音信号的关键词,完成翻译机器人自动化控制。 展开更多
关键词 智能语音 翻译机器人 自动化控制 语音识别 最小分类错误 深度学习
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部