To facilitate users to access the desired information, many researches have dedicated to the Deep Web (i.e. Web databases) integration. We focus on query translation which is an important part of the Deep Web integr...To facilitate users to access the desired information, many researches have dedicated to the Deep Web (i.e. Web databases) integration. We focus on query translation which is an important part of the Deep Web integration. Our aim is to construct automatically a set of constraints mapping rules so that the system can translate the query from the integrated interface to the Web database interfaces based on them. We construct a concept hierarchy for the attributes of the query interfaces, especially, store the synonyms and the types (e.g. Number, Text, etc.) for every concept At the same time, we construct the data hierarchies for some concepts if necessary. Then we present an algorithm to generate the constraint mapping rules based on these hierarchies. The approach is suitable for the scalability of such application and can be extended easily from one domain to another for its domain independent feature. The results of experiment show its effectiveness and efficiency.展开更多
A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water press...A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water pressure. The calculations were based on limit analysis method of upper bound theory, with the employment of non-associated Mohr-Coulomb flow rule. Nonlinear failure criterion was adopted. Optimized analysis was conducted for the effects of the tunnel depth, pore water pressure coefficient, the initial cohesive force and nonlinear coefficient on supporting force. The upper bound solutions are obtained by optimum method. Results are listed and compared with the previously published solutions for the verification of correctness and effectiveness. The failure shapes are presented, and results are discussed for different pore water pressure coefficients and nonlinear coefficients of tunnel face.展开更多
Surface structure and deep structure first come up with by Chomsky is an innovative action in linguistics. Despite the arguments involved around surface structure and deep structure, it is instructional to English-Chi...Surface structure and deep structure first come up with by Chomsky is an innovative action in linguistics. Despite the arguments involved around surface structure and deep structure, it is instructional to English-Chinese translation to some degree and its scientific connotation is meaningful to deepen language study and construct related disciplinary both in theory and practice.展开更多
Yarn sensors have shown promising application prospects in wearable electronics owing to their shape adaptability, good flexibility, and weavability. However, it is still a critical challenge to develop simultaneously...Yarn sensors have shown promising application prospects in wearable electronics owing to their shape adaptability, good flexibility, and weavability. However, it is still a critical challenge to develop simultaneously structure stable, fast response, body conformal, mechanical robust yarn sensor using full microfibers in an industrial-scalable manner. Herein, a full-fiber auxetic-interlaced yarn sensor(AIYS) with negative Poisson’s ratio is designed and fabricated using a continuous, mass-producible, structure-programmable, and low-cost spinning technology. Based on the unique microfiber interlaced architecture, AIYS simultaneously achieves a Poisson’s ratio of-1.5, a robust mechanical property(0.6 c N/dtex), and a fast train-resistance responsiveness(0.025 s), which enhances conformality with the human body and quickly transduce human joint bending and/or stretching into electrical signals. Moreover, AIYS shows good flexibility, washability, weavability, and high repeatability. Furtherly, with the AIYS array, an ultrafast full-letter sign-language translation glove is developed using artificial neural network. The sign-language translation glove achieves an accuracy of 99.8% for all letters of the English alphabet within a short time of 0.25 s. Furthermore, owing to excellent full letter-recognition ability, real-time translation of daily dialogues and complex sentences is also demonstrated. The smart glove exhibits a remarkable potential in eliminating the communication barriers between signers and non-signers.展开更多
The translation quality of neural machine translation(NMT)systems depends largely on the quality of large-scale bilingual parallel corpora available.Research shows that under the condition of limited resources,the per...The translation quality of neural machine translation(NMT)systems depends largely on the quality of large-scale bilingual parallel corpora available.Research shows that under the condition of limited resources,the performance of NMT is greatly reduced,and a large amount of high-quality bilingual parallel data is needed to train a competitive translation model.However,not all languages have large-scale and high-quality bilingual corpus resources available.In these cases,improving the quality of the corpora has become the main focus to increase the accuracy of the NMT results.This paper proposes a new method to improve the quality of data by using data cleaning,data expansion,and other measures to expand the data at the word and sentence-level,thus improving the richness of the bilingual data.The long short-term memory(LSTM)language model is also used to ensure the smoothness of sentence construction in the process of sentence construction.At the same time,it uses a variety of processing methods to improve the quality of the bilingual data.Experiments using three standard test sets are conducted to validate the proposed method;the most advanced fairseq-transformer NMT system is used in the training.The results show that the proposed method has worked well on improving the translation results.Compared with the state-of-the-art methods,the BLEU value of our method is increased by 2.34 compared with that of the baseline.展开更多
Traditional therapeutic methods in psychiatry,such as psychopharmacology and psychotherapy help many people suffering from mental disorders,but in the long-term prove to be effective in a relatively small proportion o...Traditional therapeutic methods in psychiatry,such as psychopharmacology and psychotherapy help many people suffering from mental disorders,but in the long-term prove to be effective in a relatively small proportion of those affected.Therapeutically,resistant forms of mental disorders such as schizophrenia,major depressive disorder,and bipolar disorder lead to persistent distress and dysfunction in personal,social,and professional aspects.In an effort to address these problems,the translational approach in neuroscience has initiated the inclusion of novel or modified unconventional diagnostic and therapeutic techniques with promising results.For instance,neuroimaging data sets from multiple modalities provide insight into the nature of pathophysiological mechanisms such as disruptions of connectivity,integration,and segregation of neural networks,focusing on the treatment of mental disorders through instrumental biomedical methods such as electro-convulsive therapy(ECT),transcranial magnetic stimulation(TMS),transcranial direct current stimulation(tDCS)and deep brain stimulation(DBS).These methodologies have yielded promising results that have yet to be understood and improved to enhance the prognosis of the severe and persistent psychotic and affective disorders.The current review is focused on the translational approach in the management of schizophrenia and mood disorders,as well as the adaptation of new transdisciplinary diagnostic tools such as neuroimaging with concurrently administered psychopathological questionnaires and integration of the results into the therapeutic framework using various advanced instrumental biomedical tools such as ECT,TMS,tDCS and DBS.展开更多
This study presents a novel and innovative approach to auto-matically translating Arabic Sign Language(ATSL)into spoken Arabic.The proposed solution utilizes a deep learning-based classification approach and the trans...This study presents a novel and innovative approach to auto-matically translating Arabic Sign Language(ATSL)into spoken Arabic.The proposed solution utilizes a deep learning-based classification approach and the transfer learning technique to retrain 12 image recognition models.The image-based translation method maps sign language gestures to corre-sponding letters or words using distance measures and classification as a machine learning technique.The results show that the proposed model is more accurate and faster than traditional image-based models in classifying Arabic-language signs,with a translation accuracy of 93.7%.This research makes a significant contribution to the field of ATSL.It offers a practical solution for improving communication for individuals with special needs,such as the deaf and mute community.This work demonstrates the potential of deep learning techniques in translating sign language into natural language and highlights the importance of ATSL in facilitating communication for individuals with disabilities.展开更多
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s...The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model.展开更多
Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant resear...Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges.展开更多
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im...The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.展开更多
Fluorescence microscopy technology uses fluorescent dyes to provide highly specific visualization of cell components,which plays an important role in understanding the subcellular structure.However,fluorescence micros...Fluorescence microscopy technology uses fluorescent dyes to provide highly specific visualization of cell components,which plays an important role in understanding the subcellular structure.However,fluorescence microscopy has some limitations such as the risk of non-specific cross labeling in multi-labeled fluorescent staining and limited number of fluo-rescence labels due to spectral overlap.This paper proposes a deep learning-based fluorescence to fluorescence[Flu0-Fluo]translation method,which uses a conditional generative adversarial network to predict a fluorescence image from another fluorescence image and further realizes the multi-label fluorescent staining.The cell types used include human motor neurons,human breast cancer cells,rat cortical neurons,and rat cardiomyocytes.The effectiveness of the method is verified by successfully generating virtual fluorescence images highly similar to the true fluorescence images.This study shows that a deep neural network can implement Fluo-Fluo translation and describe the localization relationship between subcellular structures labeled with different fluorescent markers.The proposed Fluo-Fluo method can avoid non-specific cross labeling in multi-label fluorescence staining and is free from spectral overlaps.In theory,an unlimited number of fluorescence images can be predicted from a single fluorescence image to characterize cells.展开更多
In order to address the shortcoming of feature representation limitation in machine translation(MT)system,this paper presents a feature transfer method in MT.Meta feature transfer of the decoding process considered no...In order to address the shortcoming of feature representation limitation in machine translation(MT)system,this paper presents a feature transfer method in MT.Meta feature transfer of the decoding process considered not only their own translation system,but also transferred knowledge of another translation system.The domain meta feature and the objective function of domain adaptation are used to better model the domain transfer task.In this paper,extensive experiments and comparisons are made.The experiment results show that the proposed model has a significant improvement in domain transfer task.The first model has better performance than baseline system,which improves 3.06 BLEU score on the news test set,improves 3.27 BLEU score on the education test set,and improves 3.93 BLEU score on the law test set;The second model improves 3.16 BLEU score on the news test set,improves 3.54 BLEU score on the education test set,and improves 4.2 BLEU score on the law test set.展开更多
Understanding the content of the source code and its regular expression is very difficult when they are written in an unfamiliar language.Pseudo-code explains and describes the content of the code without using syntax...Understanding the content of the source code and its regular expression is very difficult when they are written in an unfamiliar language.Pseudo-code explains and describes the content of the code without using syntax or programming language technologies.However,writing Pseudo-code to each code instruction is laborious.Recently,neural machine translation is used to generate textual descriptions for the source code.In this paper,a novel deep learning-based transformer(DLBT)model is proposed for automatic Pseudo-code generation from the source code.The proposed model uses deep learning which is based on Neural Machine Translation(NMT)to work as a language translator.The DLBT is based on the transformer which is an encoder-decoder structure.There are three major components:tokenizer and embeddings,transformer,and post-processing.Each code line is tokenized to dense vector.Then transformer captures the relatedness between the source code and the matching Pseudo-code without the need of Recurrent Neural Network(RNN).At the post-processing step,the generated Pseudo-code is optimized.The proposed model is assessed using a real Python dataset,which contains more than 18,800 lines of a source code written in Python.The experiments show promising performance results compared with other machine translation methods such as Recurrent Neural Network(RNN).The proposed DLBT records 47.32,68.49 accuracy and BLEU performance measures,respectively.展开更多
基金Supported by the National Natural Science Foundation of China (60573091)the Natural Science Foundation of Beijing(4073035)the Key Project of Ministry of Education of China (03044)
文摘To facilitate users to access the desired information, many researches have dedicated to the Deep Web (i.e. Web databases) integration. We focus on query translation which is an important part of the Deep Web integration. Our aim is to construct automatically a set of constraints mapping rules so that the system can translate the query from the integrated interface to the Web database interfaces based on them. We construct a concept hierarchy for the attributes of the query interfaces, especially, store the synonyms and the types (e.g. Number, Text, etc.) for every concept At the same time, we construct the data hierarchies for some concepts if necessary. Then we present an algorithm to generate the constraint mapping rules based on these hierarchies. The approach is suitable for the scalability of such application and can be extended easily from one domain to another for its domain independent feature. The results of experiment show its effectiveness and efficiency.
基金Project(2013CB036004)supported by National Basic Research Program of ChinaProjects(51178468+2 种基金51378510)supported by the National Natural Science Foundation of ChinaProject(2015zzts061)supported by the Fundamental Research Funds for the Central UniversitiesChina
文摘A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water pressure. The calculations were based on limit analysis method of upper bound theory, with the employment of non-associated Mohr-Coulomb flow rule. Nonlinear failure criterion was adopted. Optimized analysis was conducted for the effects of the tunnel depth, pore water pressure coefficient, the initial cohesive force and nonlinear coefficient on supporting force. The upper bound solutions are obtained by optimum method. Results are listed and compared with the previously published solutions for the verification of correctness and effectiveness. The failure shapes are presented, and results are discussed for different pore water pressure coefficients and nonlinear coefficients of tunnel face.
文摘Surface structure and deep structure first come up with by Chomsky is an innovative action in linguistics. Despite the arguments involved around surface structure and deep structure, it is instructional to English-Chinese translation to some degree and its scientific connotation is meaningful to deepen language study and construct related disciplinary both in theory and practice.
基金supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2020R1A2C3003344 and NRF-2020R1A4A2002728)
文摘Yarn sensors have shown promising application prospects in wearable electronics owing to their shape adaptability, good flexibility, and weavability. However, it is still a critical challenge to develop simultaneously structure stable, fast response, body conformal, mechanical robust yarn sensor using full microfibers in an industrial-scalable manner. Herein, a full-fiber auxetic-interlaced yarn sensor(AIYS) with negative Poisson’s ratio is designed and fabricated using a continuous, mass-producible, structure-programmable, and low-cost spinning technology. Based on the unique microfiber interlaced architecture, AIYS simultaneously achieves a Poisson’s ratio of-1.5, a robust mechanical property(0.6 c N/dtex), and a fast train-resistance responsiveness(0.025 s), which enhances conformality with the human body and quickly transduce human joint bending and/or stretching into electrical signals. Moreover, AIYS shows good flexibility, washability, weavability, and high repeatability. Furtherly, with the AIYS array, an ultrafast full-letter sign-language translation glove is developed using artificial neural network. The sign-language translation glove achieves an accuracy of 99.8% for all letters of the English alphabet within a short time of 0.25 s. Furthermore, owing to excellent full letter-recognition ability, real-time translation of daily dialogues and complex sentences is also demonstrated. The smart glove exhibits a remarkable potential in eliminating the communication barriers between signers and non-signers.
基金This research was supported by the National Natural Science Foundation of China(NSFC)under the grant(No.61672138).
文摘The translation quality of neural machine translation(NMT)systems depends largely on the quality of large-scale bilingual parallel corpora available.Research shows that under the condition of limited resources,the performance of NMT is greatly reduced,and a large amount of high-quality bilingual parallel data is needed to train a competitive translation model.However,not all languages have large-scale and high-quality bilingual corpus resources available.In these cases,improving the quality of the corpora has become the main focus to increase the accuracy of the NMT results.This paper proposes a new method to improve the quality of data by using data cleaning,data expansion,and other measures to expand the data at the word and sentence-level,thus improving the richness of the bilingual data.The long short-term memory(LSTM)language model is also used to ensure the smoothness of sentence construction in the process of sentence construction.At the same time,it uses a variety of processing methods to improve the quality of the bilingual data.Experiments using three standard test sets are conducted to validate the proposed method;the most advanced fairseq-transformer NMT system is used in the training.The results show that the proposed method has worked well on improving the translation results.Compared with the state-of-the-art methods,the BLEU value of our method is increased by 2.34 compared with that of the baseline.
文摘Traditional therapeutic methods in psychiatry,such as psychopharmacology and psychotherapy help many people suffering from mental disorders,but in the long-term prove to be effective in a relatively small proportion of those affected.Therapeutically,resistant forms of mental disorders such as schizophrenia,major depressive disorder,and bipolar disorder lead to persistent distress and dysfunction in personal,social,and professional aspects.In an effort to address these problems,the translational approach in neuroscience has initiated the inclusion of novel or modified unconventional diagnostic and therapeutic techniques with promising results.For instance,neuroimaging data sets from multiple modalities provide insight into the nature of pathophysiological mechanisms such as disruptions of connectivity,integration,and segregation of neural networks,focusing on the treatment of mental disorders through instrumental biomedical methods such as electro-convulsive therapy(ECT),transcranial magnetic stimulation(TMS),transcranial direct current stimulation(tDCS)and deep brain stimulation(DBS).These methodologies have yielded promising results that have yet to be understood and improved to enhance the prognosis of the severe and persistent psychotic and affective disorders.The current review is focused on the translational approach in the management of schizophrenia and mood disorders,as well as the adaptation of new transdisciplinary diagnostic tools such as neuroimaging with concurrently administered psychopathological questionnaires and integration of the results into the therapeutic framework using various advanced instrumental biomedical tools such as ECT,TMS,tDCS and DBS.
文摘This study presents a novel and innovative approach to auto-matically translating Arabic Sign Language(ATSL)into spoken Arabic.The proposed solution utilizes a deep learning-based classification approach and the transfer learning technique to retrain 12 image recognition models.The image-based translation method maps sign language gestures to corre-sponding letters or words using distance measures and classification as a machine learning technique.The results show that the proposed model is more accurate and faster than traditional image-based models in classifying Arabic-language signs,with a translation accuracy of 93.7%.This research makes a significant contribution to the field of ATSL.It offers a practical solution for improving communication for individuals with special needs,such as the deaf and mute community.This work demonstrates the potential of deep learning techniques in translating sign language into natural language and highlights the importance of ATSL in facilitating communication for individuals with disabilities.
文摘The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model.
基金supported by the Natural Science Foundation of Liaoning Province(Grant No.2023-MSBA-070)the National Natural Science Foundation of China(Grant No.62302086).
文摘Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges.
基金supported in part by the Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City,grant numbers ZXL2021425 and ZXL2022476Doctor of Innovation and Entrepreneurship Program in Jiangsu Province,grant number JSSCBS20211440+6 种基金Jiangsu Province Key R&D Program,grant number BE2019682Natural Science Foundation of Jiangsu Province,grant number BK20200214National Key R&D Program of China,grant number 2017YFB0403701National Natural Science Foundation of China,grant numbers 61605210,61675226,and 62075235Youth Innovation Promotion Association of Chinese Academy of Sciences,grant number 2019320Frontier Science Research Project of the Chinese Academy of Sciences,grant number QYZDB-SSW-JSC03Strategic Priority Research Program of the Chinese Academy of Sciences,grant number XDB02060000.
文摘The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.61871263,12034005,and 11827808)the Natural Science Foundation of Shanghai(Nos.21ZR1405200 and 20S31901300).
文摘Fluorescence microscopy technology uses fluorescent dyes to provide highly specific visualization of cell components,which plays an important role in understanding the subcellular structure.However,fluorescence microscopy has some limitations such as the risk of non-specific cross labeling in multi-labeled fluorescent staining and limited number of fluo-rescence labels due to spectral overlap.This paper proposes a deep learning-based fluorescence to fluorescence[Flu0-Fluo]translation method,which uses a conditional generative adversarial network to predict a fluorescence image from another fluorescence image and further realizes the multi-label fluorescent staining.The cell types used include human motor neurons,human breast cancer cells,rat cortical neurons,and rat cardiomyocytes.The effectiveness of the method is verified by successfully generating virtual fluorescence images highly similar to the true fluorescence images.This study shows that a deep neural network can implement Fluo-Fluo translation and describe the localization relationship between subcellular structures labeled with different fluorescent markers.The proposed Fluo-Fluo method can avoid non-specific cross labeling in multi-label fluorescence staining and is free from spectral overlaps.In theory,an unlimited number of fluorescence images can be predicted from a single fluorescence image to characterize cells.
基金supported by National Natural Science Youth Fund,China(No.61300115)China Postdoctoral Science Foundation(No.2014m561331)Science and Technology Research Project of Heilongjiang Provincial Education Department,China(No.12521073).
文摘In order to address the shortcoming of feature representation limitation in machine translation(MT)system,this paper presents a feature transfer method in MT.Meta feature transfer of the decoding process considered not only their own translation system,but also transferred knowledge of another translation system.The domain meta feature and the objective function of domain adaptation are used to better model the domain transfer task.In this paper,extensive experiments and comparisons are made.The experiment results show that the proposed model has a significant improvement in domain transfer task.The first model has better performance than baseline system,which improves 3.06 BLEU score on the news test set,improves 3.27 BLEU score on the education test set,and improves 3.93 BLEU score on the law test set;The second model improves 3.16 BLEU score on the news test set,improves 3.54 BLEU score on the education test set,and improves 4.2 BLEU score on the law test set.
文摘Understanding the content of the source code and its regular expression is very difficult when they are written in an unfamiliar language.Pseudo-code explains and describes the content of the code without using syntax or programming language technologies.However,writing Pseudo-code to each code instruction is laborious.Recently,neural machine translation is used to generate textual descriptions for the source code.In this paper,a novel deep learning-based transformer(DLBT)model is proposed for automatic Pseudo-code generation from the source code.The proposed model uses deep learning which is based on Neural Machine Translation(NMT)to work as a language translator.The DLBT is based on the transformer which is an encoder-decoder structure.There are three major components:tokenizer and embeddings,transformer,and post-processing.Each code line is tokenized to dense vector.Then transformer captures the relatedness between the source code and the matching Pseudo-code without the need of Recurrent Neural Network(RNN).At the post-processing step,the generated Pseudo-code is optimized.The proposed model is assessed using a real Python dataset,which contains more than 18,800 lines of a source code written in Python.The experiments show promising performance results compared with other machine translation methods such as Recurrent Neural Network(RNN).The proposed DLBT records 47.32,68.49 accuracy and BLEU performance measures,respectively.