Based on the abundant information from drilling, cores, and logging, the influence of topography, size of rivers and lakes, climate changes and the lake level's fluctuation on the sandbodies at shallow-water delta fr...Based on the abundant information from drilling, cores, and logging, the influence of topography, size of rivers and lakes, climate changes and the lake level's fluctuation on the sandbodies at shallow-water delta front are systematically summarized and the sedimentary dynamic processes are analyzed. The interwell communication among the sandbodies and their planar distribution revealed from the hydrodynamic features of the development wells are integrated during the analysis. The fundamental requirements for the development of the shallow-water delta included flat topography and uniform subsiding rate. The delta plain was connected smoothly with the wide delta front and predelta, without the three-fold structure of topset, foreset, and bottomset as defined in the Gilbert Delta Model. Because of the weak fluvial effect and the lake energy is strong, the small and scattered shallow-water delta is destroyed by the scouring-backwashing, coastal current, and lake wave, resulting in the coastal sheet deposition. As the fluvial effect became stronger and the lake energy became weaker, the shape of the shallow-water deltas transferred from sheets to lumps and then branches.展开更多
Objective China's petroleum exploration has entered a new stage of finding deeply buried thin sandbodies lbr the abundant oil resources they contain. Here thin sandbodies refer to those less than 10 m in thickness, ...Objective China's petroleum exploration has entered a new stage of finding deeply buried thin sandbodies lbr the abundant oil resources they contain. Here thin sandbodies refer to those less than 10 m in thickness, or even less than 1-2 m. It is difficult to depict thin-layer sandbodies of different genetic types using conventional core, well logging and seismic data due to their limited vertical resolution in petroliferous basins. However, seismic sedimentology provides a new research method especially tbr thin sandbody interpretation, i.e., validating interpreted sedimentary sandbodies from 3D seismic data based on horizontal resolution, stratal slice and seismic geomorphology interpretation. At present, a series of studies on seismic sedimentology in North America marine basins and elsewhere have been completed successfully and are relevant to the exploration and development of oil and gas fields.展开更多
Based on the analysis of core,logging,and testing data,the fourth member of the Cretaceous Quantou Formation(K_(2)q^(4))in the Sanzhao depression,Songliao Basin,is investigated in order to understand the sedimentary c...Based on the analysis of core,logging,and testing data,the fourth member of the Cretaceous Quantou Formation(K_(2)q^(4))in the Sanzhao depression,Songliao Basin,is investigated in order to understand the sedimentary characteristics and hydrocarbon exploration significance of a retrograding shallow-water delta.The results show that during the sedimentary period of K_(2)q^(4),the Sanzhao depression with a gentle basement experienced stable tectonic subsidence and suffered a long-term lake level rise caused by paleoclimate changes(from semiarid to semihumid),the K_(2)q^(4)in the study area were dominated by a fining-upward deltaic succession and had relatively stable thickness.From the bottom to the top,the color of mudstone gradually changes from purplish-red to gray and grayish-green,the contents of caliche nodules decrease gradually,while the presence of pyrite in sediments becomes frequent.Channel sandstones mainly composed of siltstone and fine sandstone with developed high-energy sedimentary structures constitute the main sand bodies of deltaic deposits,but the scale of channel sandstones decrease upward.Despite the long-term lake level rise and fining-upward sedimentary succession,purplish-red mudstone,caliche nodules and thin channel sandstones are still broadly distributed in the study area,and thin channel sandstones can be found at the top of K_(2)q^(4)covered by the black oil shale of Qingshankou Formation.These assertations suggest that the study area was dominated by retrograding shallow-water delta deposits during the sedimentary period of K_(2)q^(4).In comparison with modern Poyang Lake,we infer that during the sedimentary period of K_(2)q^(4),the study area experienced frequent lake level fluctuations triggered by paleoclimate changes despite the long-term lake level rise,and the lake level fluctuations control the deposition of retrograding shallow-water delta.In addition,most of the thin channel sandstones distributed at the top of K_(2)q^(4)and covered by black oil shale are generally immersed in oil,indicating that the thin channel sandstones formed at the top of a retrograding shallow-water delta sedimentary succession are favorable targets for lithological reservoir exploration.展开更多
Shallow-water deltas are now a research focus of international sedimentology. Researchers have recently discovered that water depth is an important controlling factor for the development of shallow deltas, and that si...Shallow-water deltas are now a research focus of international sedimentology. Researchers have recently discovered that water depth is an important controlling factor for the development of shallow deltas, and that significant differences exist between shallow-water deltas and the traditional Gilbert deltas. The identification marks of shallow-water deltas are critical for better understanding sedimentary characteristics of these deltas. In continental basins, especially China's Mesozoic and Cenozoic continental basins, shallow-water deltas are widely developed. Thus, this work took the Songliao Basin as an example to analysis this kind of deltas.展开更多
The Huanghekou Sag is located at the southeast part of the Bohai Bay Basin, northern China. Large-scale shallow lake delta developed in the Neogene provided suitable geological conditions for the formation of a subtle...The Huanghekou Sag is located at the southeast part of the Bohai Bay Basin, northern China. Large-scale shallow lake delta developed in the Neogene provided suitable geological conditions for the formation of a subtle oil-gas reservoir in this area. The key for analyzing sandstone reservoir and sedimentary facies is by using seismic attributes(amplitude) to establish the relationship between lithology combination and seismic attributes. The lower unit of Late Miocene Minghuazhen Formation at the BZ34 block in the Huanghekou Sag was subdivided into 10 parasequence sets(PSS). Thicker sandstones mainly occurred in PSS1 and PSS10, whereas thin sandstones are mostly observed within other parasequence sets. This study presents statistics and analyses of lithology, i.e., statistics of root-meansquare(RMS) amplitude and lithology of well locations in different parasequence sets of the study area,as well as 1-D forward seismic models of 7 types of lithology combinations, the establishment of a spatial distribution of 2-D sandbody, forward seismic models etc. Our study indicates that high amplitude peaks correspond to thicker sandbodies, while low amplitude indicates non-development of sandbodies(generally less than 2 m), and medium amplitude agrees well with large sets of mudstones interbedded with medium and thinner sandstones. Different sand-mudstone combinations genetically reflect a combination of multiple micro-facies, therefore, amplitude features can predict sandbodies as well as facies characteristics.展开更多
文摘Based on the abundant information from drilling, cores, and logging, the influence of topography, size of rivers and lakes, climate changes and the lake level's fluctuation on the sandbodies at shallow-water delta front are systematically summarized and the sedimentary dynamic processes are analyzed. The interwell communication among the sandbodies and their planar distribution revealed from the hydrodynamic features of the development wells are integrated during the analysis. The fundamental requirements for the development of the shallow-water delta included flat topography and uniform subsiding rate. The delta plain was connected smoothly with the wide delta front and predelta, without the three-fold structure of topset, foreset, and bottomset as defined in the Gilbert Delta Model. Because of the weak fluvial effect and the lake energy is strong, the small and scattered shallow-water delta is destroyed by the scouring-backwashing, coastal current, and lake wave, resulting in the coastal sheet deposition. As the fluvial effect became stronger and the lake energy became weaker, the shape of the shallow-water deltas transferred from sheets to lumps and then branches.
基金financially supported by the National Science Foundation of China(Grant No.41272133)
文摘Objective China's petroleum exploration has entered a new stage of finding deeply buried thin sandbodies lbr the abundant oil resources they contain. Here thin sandbodies refer to those less than 10 m in thickness, or even less than 1-2 m. It is difficult to depict thin-layer sandbodies of different genetic types using conventional core, well logging and seismic data due to their limited vertical resolution in petroliferous basins. However, seismic sedimentology provides a new research method especially tbr thin sandbody interpretation, i.e., validating interpreted sedimentary sandbodies from 3D seismic data based on horizontal resolution, stratal slice and seismic geomorphology interpretation. At present, a series of studies on seismic sedimentology in North America marine basins and elsewhere have been completed successfully and are relevant to the exploration and development of oil and gas fields.
基金financially supported by the National Science and Technology Major Project of China(H.M.Y.,grant number 2016ZX05013006-006)Natural Science Foundation of Hubei Province of China(L.H.,grant number 2020CFB745)
文摘Based on the analysis of core,logging,and testing data,the fourth member of the Cretaceous Quantou Formation(K_(2)q^(4))in the Sanzhao depression,Songliao Basin,is investigated in order to understand the sedimentary characteristics and hydrocarbon exploration significance of a retrograding shallow-water delta.The results show that during the sedimentary period of K_(2)q^(4),the Sanzhao depression with a gentle basement experienced stable tectonic subsidence and suffered a long-term lake level rise caused by paleoclimate changes(from semiarid to semihumid),the K_(2)q^(4)in the study area were dominated by a fining-upward deltaic succession and had relatively stable thickness.From the bottom to the top,the color of mudstone gradually changes from purplish-red to gray and grayish-green,the contents of caliche nodules decrease gradually,while the presence of pyrite in sediments becomes frequent.Channel sandstones mainly composed of siltstone and fine sandstone with developed high-energy sedimentary structures constitute the main sand bodies of deltaic deposits,but the scale of channel sandstones decrease upward.Despite the long-term lake level rise and fining-upward sedimentary succession,purplish-red mudstone,caliche nodules and thin channel sandstones are still broadly distributed in the study area,and thin channel sandstones can be found at the top of K_(2)q^(4)covered by the black oil shale of Qingshankou Formation.These assertations suggest that the study area was dominated by retrograding shallow-water delta deposits during the sedimentary period of K_(2)q^(4).In comparison with modern Poyang Lake,we infer that during the sedimentary period of K_(2)q^(4),the study area experienced frequent lake level fluctuations triggered by paleoclimate changes despite the long-term lake level rise,and the lake level fluctuations control the deposition of retrograding shallow-water delta.In addition,most of the thin channel sandstones distributed at the top of K_(2)q^(4)and covered by black oil shale are generally immersed in oil,indicating that the thin channel sandstones formed at the top of a retrograding shallow-water delta sedimentary succession are favorable targets for lithological reservoir exploration.
基金financially supported by the National Natural Science Foundation of China(grant No.41272133)
文摘Shallow-water deltas are now a research focus of international sedimentology. Researchers have recently discovered that water depth is an important controlling factor for the development of shallow deltas, and that significant differences exist between shallow-water deltas and the traditional Gilbert deltas. The identification marks of shallow-water deltas are critical for better understanding sedimentary characteristics of these deltas. In continental basins, especially China's Mesozoic and Cenozoic continental basins, shallow-water deltas are widely developed. Thus, this work took the Songliao Basin as an example to analysis this kind of deltas.
基金funded by the National Science and Technology Major Project(Exploration Technologies for Offshore Hidden Oil/Gas)(Project No.:2016ZX05024003-003)
文摘The Huanghekou Sag is located at the southeast part of the Bohai Bay Basin, northern China. Large-scale shallow lake delta developed in the Neogene provided suitable geological conditions for the formation of a subtle oil-gas reservoir in this area. The key for analyzing sandstone reservoir and sedimentary facies is by using seismic attributes(amplitude) to establish the relationship between lithology combination and seismic attributes. The lower unit of Late Miocene Minghuazhen Formation at the BZ34 block in the Huanghekou Sag was subdivided into 10 parasequence sets(PSS). Thicker sandstones mainly occurred in PSS1 and PSS10, whereas thin sandstones are mostly observed within other parasequence sets. This study presents statistics and analyses of lithology, i.e., statistics of root-meansquare(RMS) amplitude and lithology of well locations in different parasequence sets of the study area,as well as 1-D forward seismic models of 7 types of lithology combinations, the establishment of a spatial distribution of 2-D sandbody, forward seismic models etc. Our study indicates that high amplitude peaks correspond to thicker sandbodies, while low amplitude indicates non-development of sandbodies(generally less than 2 m), and medium amplitude agrees well with large sets of mudstones interbedded with medium and thinner sandstones. Different sand-mudstone combinations genetically reflect a combination of multiple micro-facies, therefore, amplitude features can predict sandbodies as well as facies characteristics.