期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
RL3(t),Responsible for Leaf Shape Formation,Delimited to a 46-kb DNA Fragment in Rice
1
作者 GUO Min LI Rong-de +6 位作者 YAO Jian ZHU Juan FAN Xiang-yun WANG Wei TANG Shu-zhu GU Ming-hong YAN Chang-jie 《Rice science》 SCIE CSCD 2015年第1期44-48,共5页
Two mutants with rolled leaves, temporally designated as rl3(t)-I and rl3(t)-2, were served for exploring the mechanism underlying the rolled leaf characteristic. Except for having typical rolled leaves, the plant... Two mutants with rolled leaves, temporally designated as rl3(t)-I and rl3(t)-2, were served for exploring the mechanism underlying the rolled leaf characteristic. Except for having typical rolled leaves, the plant heights and panicle lengths of rl3(t)-1 and rl3(t)-2 significantly decreased, and the seed-setting rate also decreased when compared with wild type 93-11. Cytological analysis suggested that the rolled leaf phenotype might be caused by the changes of number and size of bulliform cells. Genetic analysis indicated rl3(t)-1 is allelic to rl3(t)-2, and controlled by a recessive gene. Gene mapping result indicated that RL3(t) gene resided in a 46-kb long region governed by the sequence tag site markers S3-39 and S3-36 on rice chromosome 3. The result provides an important clue for further cloning the RL3(t) and understanding the mechanism of rice leaf development. 展开更多
关键词 gene mapping leaf shape formation MUTANT RICE rolled leaf gene
下载PDF
Formation Mechanism of Curved Martensite Structures in Cu-based Shape Memory Alloys 被引量:2
2
作者 Yujun BAI, Qiquan SHI,Guili GENG, Dongsheng SUN and Xiufang BIAN (Institute of Materials Engineering, Shandong University of Technology, Jinan 250061, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第1期79-81,共3页
The curved martensite structures have been observed in CuZnAI-based shape memory alloys by both transmission electron microscope and optical microscope. It was found that the curved martensite structures observed in a... The curved martensite structures have been observed in CuZnAI-based shape memory alloys by both transmission electron microscope and optical microscope. It was found that the curved martensite structures observed in as-solution treated, as-aged and as-trained alloys usually occurred around dislocation tangles or precipitate, at the plate boundary or grain boundary, and when the growing plates collided with each other or alternate mutually. 展开更多
关键词 formation Mechanism of Curved Martensite Structures in Cu-based shape Memory Alloys CU
下载PDF
Leader trajectory planning method considering constraints of formation controller
3
作者 YAO Dongdong WANG Xiaofang +1 位作者 LIN Hai WANG Zhuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1294-1308,共15页
To ensure safe flight of multiple fixed-wing unmanned aerial vehicles(UAVs)formation,considering trajectory planning and formation control together,a leader trajectory planning method based on the sparse A*algorithm i... To ensure safe flight of multiple fixed-wing unmanned aerial vehicles(UAVs)formation,considering trajectory planning and formation control together,a leader trajectory planning method based on the sparse A*algorithm is introduced.Firstly,a formation controller based on prescribed performance theory is designed to control the transient and steady formation configuration,as well as the formation forming time,which not only can form the designated formation configuration but also can guarantee collision avoidance and terrain avoidance theoretically.Next,considering the constraints caused by formation controller on trajectory planning such as the safe distance,turn angle and step length,as well as the constraint of formation shape,a leader trajectory planning method based on sparse A^(*)algorithm is proposed.Simulation results show that the UAV formation can arrive at the destination safely with a short trajectory no matter keeping the formation or encountering formation transformation. 展开更多
关键词 trajectory planning formation control prescribed performance controller multiple constraints formation shape formation transformation
下载PDF
Theoretical and numerical simulation study on jet formation and penetration of different liner structures driven by electromagnetic pressure 被引量:3
4
作者 Jian-hao Dou Xin Jia +4 位作者 Zheng-xiang Huang Xiao-hui Gu Ying-min Zheng Bin Ma Qiang-qiang Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期846-858,共13页
The use of a shaped liner driven by electromagnetic force is a new means of forming jets. To study the mechanism of jet formation driven by electromagnetic force, we considered the current skin effect and the characte... The use of a shaped liner driven by electromagnetic force is a new means of forming jets. To study the mechanism of jet formation driven by electromagnetic force, we considered the current skin effect and the characteristics of electromagnetic loading and established a coupling model of "ElectriceMagnetic eForce" and the theoretical model of jet formation under electromagnetic force. The jet formation and penetration of conical and trumpet liners have been calculated. Then, a numerical simulation of liner collapse under electromagnetic force, jet generation, and the stretching motion were performed using an ANSYS multiphysics processor. The calculated jet velocity, jet shape, and depth of penetration were consistent with the experimental results, with a relative error of less than 10%. In addition, we calculated the jet formation of different curvature trumpet liners driven by the same loading condition and obtained the influence rule of the curvature of the liner on jet formation. Results show that the theoretical model and the ANSYS multiphysics numerical method can effectively calculate the jet formation of liners driven by electromagnetic force, and in a certain range, the greater the curvature of the liner is, the greater the jet velocity is. 展开更多
关键词 Electromagnetic field shaped charge jet formation Theoretical calculation Numerical simulation
下载PDF
Shape control of spacecraft formation using a virtual spring-damper mesh 被引量:3
5
作者 Chen Qifeng Meng Yunhe Xing Jianjun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1730-1739,共10页
This paper derives a distance-based formation control method to maintain the desired formation shape for spacecraft in a gravitational potential field. The method is an analogy of a virtual spring-damper mesh. Spacecr... This paper derives a distance-based formation control method to maintain the desired formation shape for spacecraft in a gravitational potential field. The method is an analogy of a virtual spring-damper mesh. Spacecraft are connected virtually by spring-damper pairs. Convergence analysis is performed using the energy method. Approximate expressions for the distance errors and control accelerations at steady state are derived by using algebraic graph representations and results of graph rigidity. Analytical results indicate that if the underlying graph of the mesh is rigid, the convergence to a static shape is assured, and higher formation control precision can be achieved by increasing the elastic coefficient without increasing the control accelerations. A numerical example of spacecraft formation in low Earth orbit confirms the theoretical analysis and shows that the desired formation shape can be well achieved using the presented method, whereas the orientation of the formation can be kept pointing to the center of the Earth by the gravity gradient. The method is decentralized, and uses only relative measurement information. Constructing a distributed virtual structure in space can be the general application area. The proposed method can serve as an active shape control law for the spacecraft formations using propellantless internal forces. 展开更多
关键词 formation shape control Graph rigidity Internal forces PD control Spacecraft formation flying Spacecraft guidance and control Spring-damper mesh
原文传递
Distributed formation control of multiple aerial vehicles based on guidance route 被引量:1
6
作者 Jinyong CHEN Rui ZHOU +2 位作者 Guibin SUN Qingwei LI Ning ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第3期368-381,共14页
Formation control of fixed-wing aerial vehicles is an important yet rarely addressed problem because of their complex dynamics and various motion constraints,such as nonholonomic and velocity constraints.The guidance-... Formation control of fixed-wing aerial vehicles is an important yet rarely addressed problem because of their complex dynamics and various motion constraints,such as nonholonomic and velocity constraints.The guidance-route-based strategy has been demonstrated to be applicable to fixed-wing aircraft.However,it requires a global coordinator and there exists control lag,due to its own natures.For this reason,this paper presents a fully distributed guidance-route-based formation approach to address the aforementioned issues.First,a hop-count scheme is introduced to achieve distributed implementation,in which each aircraft chooses a neighbor with the minimum hop-count as a reference to generate its guidance route using only local information.Next,the model predictive control algorithm is employed to eliminate the control lag and achieve precise formation shape control.In addition,the stall protection and collision avoidance are also considered.Finally,three numerical simulations demonstrate that our proposed approach can implement precise formation shape control of fixed-wing aircraft in a fully distributed manner. 展开更多
关键词 formation shape control Fixed-wing aircraft Guidance route Hop-count estimation Model predictive control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部